We develop a molecular nanoscaled model for tubular motors propelled by bubble propulsion. The motor is modeled by a carbon nanotube, and the bubble is represented by a particle interacting with water by a time-dependent potential. Effects of liquid viscosity, fuel concentration, geometry, and size of the tube on the performance of the motor are effectively encoded into two parameters: time scales of the bubble expansion and bubble formation. Our results are qualitatively consistent with experimental data of much larger motors. Simulations suggest that (i) the displacement of the tube is optimized if two time scales are as short as possible, (ii) the compromise between the performance and fuel consumption is achieved if the bubble formation time is shorter than the velocity correlation time of the tube, (iii) the motor efficiency is higher with slow expansion, short formation of the bubble than fast growth but long formation time, and (iv) the tube is propelled by strong forces on the order of mN, reaching high speeds up to ∼60 m/s. Our simulation may be useful for refining and encouraging future experimental work on nanomotors having the size of a few nanometers. The tiny size and high speed motors could have great potential applications in real life.

1.
L.
Soler
,
V.
Magdanz
,
V. M.
Fomin
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Self-propelled micromotors for cleaning polluted water
,”
ACS Nano
7
,
9611
(
2013
).
2.
A.
Molinero-Fernandez
,
M.
Moreno-Guzman
,
M.
Lopez
, and
A.
Escarpa
, “
Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors
,”
Anal. Chem.
89
,
10850
(
2017
).
3.
Z.
Wu
,
Y.
Wu
,
W.
He
,
X.
Lin
,
J.
Sun
, and
Q.
He
, “
Self-propelled polymer-based multilayer nanorockets for transportation and drug release
,”
Angew. Chem., Int. Ed.
52
,
7000
(
2013
).
4.
J.
Katuri
,
X.
Ma
,
M. M.
Stanton
, and
S.
Sanchez
, “
Designing micro- and nanoswimmers for specific applications
,”
Acc. Chem. Res.
50
,
2
(
2017
).
5.
L.
Ren
,
W.
Wang
, and
T. E.
Mallouk
, “
Two forces are better than one: Combining chemical and acoustic propulsion for enhanced micromotor functionality
,”
Acc. Chem. Res.
51
,
1948
(
2018
).
6.
T.
Patino
,
X.
Arque
,
R.
Mestre
,
L.
Palacios
, and
S.
Sanchez
, “
Fundamental aspects of enzyme-powered micro- and nanoswimmers
,”
Acc. Chem. Res.
51
,
2662
(
2018
).
7.
F.
Zha
,
T.
Wang
,
M.
Luo
, and
J.
Guan
, “
Tubular micro/nanomotors: Propulsion mechanisms, fabrication techniques and applications
,”
Micromachines
9
,
78
(
2018
).
8.
B.
Xu
,
B.
Zhang
,
L.
Wang
,
G.
Huang
, and
Y.
Mei
, “
Tubular micro/nanomachines: From the basics to recent advances
,”
Adv. Funct. Mater.
28
,
1705872
(
2018
).
9.
Y.
Mei
,
G.
Huang
,
A. A.
Solovev
,
E. B.
Urena
,
I.
Monch
,
F.
Ding
,
T.
Reindl
,
R. K. Y.
Fu
,
P. K.
Chu
, and
O. G.
Schmidt
, “
Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
,”
Adv. Matter
20
,
4085
(
2008
).
10.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Ann. Rev. Fluid Mech.
21
,
61
(
1989
).
11.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Designing phoretic micro- and nano-swimmers
,”
New J. Phys.
9
,
126
(
2007
).
12.
G.
Ruckner
and
R.
Kapral
, “
Chemically powered nanodimers
,”
Phys. Rev. Lett.
98
,
150603
(
2007
).
13.
J. G.
Gibbs
and
Y. P.
Zhao
, “
Autonomously motile catalytic nanomotors by bubble propulsion
,”
Appl. Phys. Lett.
94
,
163104
(
2009
).
14.
Y.-G.
Tao
and
R.
Kapral
, “
Swimming upstream: Self-propelled nanodimer motors in a flow
,”
Soft Matter
6
,
756
(
2010
).
15.
H. A.
Zambrano
,
J. H.
Walther
, and
R. L.
Jaffe
, “
Thermally driven molecular linear motors: A molecular dynamics study
,”
J. Chem. Phys.
131
,
241104
(
2009
).
16.
J.
Li
,
G.
Huang
,
M.
Ye
,
M.
Li
,
R.
Liu
, and
Y.
Mei
, “
Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment
,”
Nanoscale
3
,
5083
(
2011
).
17.
S.
Ebbens
,
M. H.
Tu
,
J. R.
Howse
, and
R.
Golestanian
, “
Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers
,”
Phys. Rev. E
85
,
020401
(
2012
).
18.
M. T.
Manjare
,
B.
Yang
, and
Y. P.
Zhao
, “
Bubble driven quasioscillatory translational motion of catalytic micromotors
,”
Phys. Rev. Lett.
109
,
128305
(
2012
).
19.
P.
de Buyl
and
R.
Kapral
, “
Phoretic self-propulsion: A mesoscopic description of reaction dynamics that powers motion
,”
Nanoscale
5
,
1337
(
2013
).
20.
V. M.
Fomin
,
M.
Hippler
,
V.
Magdanz
,
L.
Soler
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Propulsion mechanism of catalytic microjet engines
,”
IEEE Trans. Robot
30
,
40
(
2014
).
21.
L.
Li
,
J.
Wang
,
T.
Li
,
W.
Songa
, and
G.
Zhanga
, “
Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment
,”
Soft Matter
10
,
7511
(
2014
).
22.
J.-X.
Chen
,
Y.-G.
Chen
, and
Y.-Q.
Ma
, “
Chemotactic dynamics of catalytic dimer nanomotors
,”
Soft Matter
12
,
1876
(
2016
).
23.
D. S.
Cambuia
,
M.
Godoyc
, and
A.
de Arruda
, “
Finite-size effects in simulations of self-propelled particles system
,”
Physica A
467
,
129
(
2017
).
24.
L.
Deprez
and
P.
de Buyl
, “
Passive and active colloidal chemotaxis in a microfluidic channel: Mesoscopic and stochastic models
,”
Soft Matter
13
,
3532
(
2017
).
25.
M. H.
Viet
,
P.
Derreumaux
, and
P. H.
Nguyen
, “
Nonequilibrium all-atom molecular dynamics simulation of the ultrasound induced bubble cavitation and application to dissociate amyloid fibril
,”
J. Chem. Phys.
145
,
174113
(
2016
).
26.
M. H.
Viet
,
M. T.
Phan
,
M.
Li
,
P.
Derreumaux
,
W.
Junmei
,
N. T.
Van-Oanh
,
P.
Derreumaux
, and
P. H.
Nguyen
, “
Molecular mechanism of the cell membrane pore formation induced by bubble stable cavitation
,”
J. Phys. Chem. B
123
,
71
(
2019
).
27.
M. H.
Viet
,
M.
Li
,
P.
Derreumaux
, and
P. H.
Nguyen
, “
Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study
,”
J. Chem. Phys.
148
,
094505
(
2018
).
28.
Lord Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Phil. Mag.
34
,
94
98
(
1917
).
29.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech. Trans. ASME
16
,
277
282
(
1949
).
30.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides
,”
J. Phys. Chem. B
105
,
6474
6487
(
2001
).
31.
J.
Dzubiella
, “
Interface dynamics of microscopic cavities in water
,”
J. Chem. Phys.
126
,
194504
(
2007
).
32.
F.
Lugli
,
S.
Hofinger
, and
F.
Zerbetto
, “
The collapse of nanobubbles in water
,”
J. Am. Chem. Soc.
127
,
8020
(
2005
).
33.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
, “
GROMACS 3.0: A package for molecular simulation and trajectory analysis
,”
J. Mol. Mod.
7
,
306
317
(
2001
).
34.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
, “
Molecular-dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
35.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
36.
X.
Ma
,
A. C.
Hortelao
,
A.
Miguel-Lopez
, and
S.
Sanchez
, “
Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions
,”
J. Am. Chem. Soc.
138
,
13782
(
2016
).
37.
W.
Gao
,
S.
Sattayasamitsathit
,
J.
Orozcoa
, and
J.
Wang
, “
Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes
,”
J. Am. Chem. Soc.
133
,
11862
(
2011
).
38.
W.
Gao
,
S.
Sattayasamitsathit
,
J.
Orozcoa
, and
J.
Wang
, “
Efficient bubble propulsion of polymer-based microengines in real-life environments
,”
Nanoscale
5
,
8909
(
2013
).
39.
L.
Wanga
,
T.
Li
,
L.
Li
,
J.
Wang
,
W.
Songa
, and
G.
Zhanga
, “
Microrocket based viscometer
,”
ECS J. Solid State Sci. Technol.
4
,
S3020
(
2015
).
40.
L.
Liu
,
T.
Bai
,
Q.
Chi
,
Z.
Wang
,
S.
Xu
,
Q.
Liu
, and
Q.
Wang
, “
How to make a fast, efficient bubble-driven micromotor: A mechanical view
,”
Micromachines
8
,
267
(
2017
).
41.
S.
Sanchez
,
A. N.
Ananth
,
V. M.
Fomin
,
M.
Viehrig
, and
O. G.
Schmidt
, “
Superfast motion of catalytic microjet engines at physiological temperature
,”
J. Am. Chem. Soc.
133
,
14860
(
2011
).
42.
A. A.
Solovev
,
Y.
Mei
,
E. B.
Urena
,
G.
Huang
, and
O. G.
Schmidt
, “
Catalytic microtubular jet engines self-propelled by accumulated gas bubbles
,”
Small
5
,
1688
(
2009
).
43.
A. A.
Solovev
,
S.
Sanchez
,
M.
Pumera
,
Y. F.
Mei
, and
O. G.
Schmidt
, “
Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects
,”
Adv. Funct. Mater.
20
,
2430
(
2010
).
44.
L.
Wang
,
L.
Chen
,
J.
Zhang
,
J.
Duan
,
L.
Wang
,
Z.
Silber-Li
,
X.
Zheng
, and
H.
Cui
, “
Efficient propulsion and hovering of bubble-driven hollow micromotors underneath an air–liquid interface
,”
Langmuir
34
,
10426
(
2018
).
You do not currently have access to this content.