Here, we investigate the unfolding behavior of a streptomycin-binding ribonucleic acid (RNA) aptamer under application of force in shear geometry. Using Langevin out-of-equilibrium simulations to emulate the single-molecule force spectroscopy (SMFS) experiment, we were able to understand the hierarchical unfolding process that occurs in the RNA molecule under application of stretching force and the influence of streptomycin modifying this unfolding. Subsequently, the application of the Jarzynski equality to the force profiles obtained in the pulling simulations shows that the free energies for individual systems and the difference of unfolding free energy upon streptomycin binding to the RNA free aptamer are in fair agreement with the experimental values, obtained through SMFS by Nick et al. [J. Phys. Chem. B 120, 6479 (2016)].

1.
D.
Voet
and
J. G.
Voet
,
Biochemistry
, 4th ed. (
John Wiley & Sons
,
New York
,
2010
).
2.
P.
Dua
,
S.
Kim
, and
D.
Lee
, “
Nucleic acid aptamers targeting cell-surface proteins
,”
Methods
54
,
215
225
(
2011
).
3.
N.
Windbichler
and
R.
Schroeder
, “
Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer
,”
Nat. Protoc.
1
,
637
640
(
2006
).
4.
D.
Sharma
,
A. R.
Cukras
,
E. J.
Rogers
,
D. R.
Southworth
, and
R.
Gree
, “
Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome
,”
J. Mol. Biol.
374
,
1065
1076
(
2007
).
5.
V.
Tereshko
,
E.
Skripkin
, and
D. J.
Patel
, “
Encapsulating streptomycin within a small 40-mer RNA
,”
Chem. Biol.
10
,
175
187
(
2003
).
6.
T. A.
Nick
,
T. E.
de Oliveira
,
D. W.
Pilat
,
F.
Spenkuch
,
H.
Butt
,
M.
Helm
,
P. A.
Netz
, and
R.
Berger
, “
Stability of a split streptomycin binding aptamer
,”
J. Phys. Chem. B
120
,
6479
6489
(
2016
).
7.
F.
Rico
,
L.
Gonzalez
,
I.
Casuso
,
M.
Puig-Vidal
, and
S.
Scheuring
, “
High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations
,”
Science
342
,
741
743
(
2013
).
8.
A. V.
Glyakina
,
N. K.
Balabaev
, and
O. V.
Galzitskaya
, “
Mechanical unfolding of proteins L and G with constant force: Similarities and differences
,”
J. Chem. Phys.
131
,
045102
(
2009
).
9.
E. H.
Lee
,
J.
Hsin
,
M.
Sotomayor
,
G.
Comellas
, and
K.
Schulten
, “
Discovery through the computational microscope
,”
Structure
17
,
1295
1306
(
1999
).
10.
H.
Lu
,
B.
Isralewitz
,
A.
Krammer
,
V.
Vogel
, and
K.
Schulten
, “
Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation
,”
Biophys. J.
75
,
662
671
(
1998
).
11.
H.
Grubmüller
,
B.
Heymann
, and
P.
Tavan
, “
Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force
,”
Science
271
,
997
999
(
1996
).
12.
A. M.
Naserian-Nik
,
M.
Tahani
, and
M.
Karttunen
, “
Pulling of double-stranded DNA by atomic force microscopy: A simulation in atomistic details
,”
RSC Adv.
3
,
10516
10528
(
2013
).
13.
A. M.
Naserian-Nik
,
M.
Tahani
, and
M.
Karttunen
, “
Molecular dynamics study of DNA oligomers under angled pulling
,”
RSC Adv.
4
,
10751
10760
(
2014
).
14.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
15.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
16.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
, “
Refinement of the AMBER force field for nucleic acids: Improving the description of alfa/gamma conformers
,”
Biophys. J.
92
,
3817
3829
(
2007
).
17.
A. T.
Guy
,
T. J.
Piggot
, and
S.
Khalid
, “
Single-stranded DNA within nanopores: Conformational dynamics and implications for sequencing: A molecular dynamics simulation study
,”
Biophys. J.
103
,
1028
1036
(
2012
).
18.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
26
,
114
(
2005
).
19.
G.
Hawkins
,
C.
Cramer
, and
D.
Truhlar
, “
Pairwise solute descreening of solute charges from a dielectric medium
,”
Chem. Phys. Lett.
246
,
122
129
(
1995
).
20.
G.
Hawkins
,
C.
Cramer
, and
D.
Truhlar
, “
Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium
,”
J. Phys. Chem.
100
,
19824
19839
(
1996
).
21.
V.
Tsui
and
D.
Case
, “
Theory and applications of the generalized born solvation model in macromolecular simulations
,”
Biopolymers
56
,
275
291
(
2001
).
22.
X.
Lu
,
W. K.
Olson
, and
H. J.
Bussemaker
, “
The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpU/GpA mini duplex
,”
Nucleic Acids Res.
38
,
4868
4876
(
2010
).
23.
X.
Lu
and
W. K.
Olson
, “
3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures
,”
Nat. Protoc.
3
,
1213
1227
(
2008
).
24.
X.
Lu
and
W. K.
Olson
, “
3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
,”
Nucleic Acids Res.
31
,
5108
5121
(
2003
).
25.
S.
Park
,
F.
Khalili-Araghi
,
E.
Tajkhorshid
, and
K.
Schulten
, “
Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality
,”
J. Chem. Phys.
119
,
3559
3566
(
2003
).
26.
F. M.
Ytreberg
and
D. M.
Zuckerman
, “
Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems
,”
J. Comput. Chem.
25
,
1749
1759
(
2004
).
27.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
28.
C.
Jarzynski
, “
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach
,”
Phys. Rev. E
56
,
5018
5035
(
1997
).
29.
A.
Nunes-Alves
and
G. M.
Arantes
, “
Mechanical unfolding of macromolecules coupled to bond dissociation
,”
J. Chem. Theory Comput.
14
,
282
290
(
2018
).
30.
M.
Manosas
and
F.
Ritort
, “
Thermodynamic and kinetic aspects of RNA pulling experiments
,”
Biophys. J.
88
,
3224
3242
(
2005
).
31.
G.
Hummer
and
A.
Szabo
, “
Kinetics from nonequilibrium single-molecule pulling experiments
,”
Biophys. J.
85
,
5
15
(
2003
).
32.
D. A.
Hendrix
and
C.
Jarzynski
, “
A “fast growth” method of computing free energy differences
,”
J. Chem. Phys.
114
,
5974
5981
(
2001
).
33.
S.
Sheridan
,
F.
Gräter
, and
C.
Daday
, “
How fast is too fast in force-probe molecular dynamics simulations?
,”
J. Phys. Chem. B
123
,
3658
3664
(
2019
).
34.
D. K.
West
,
P. D.
Olmsted
, and
E.
Paci
, “
Free energy of protein folding from nonequilibrium simulations using the Jarzynski equality
,”
J. Chem. Phys.
125
,
204910
(
2006
).
35.
M.
Carrion-Vazquez
,
A. F.
Oberhauser
,
S. B.
Fowler
,
P. E.
Marszalek
,
S. E.
Broedel
,
J.
Clarke
, and
J. M.
Fernandez
, “
Mechanical and chemical unfolding of a single protein: A comparison
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
3694
3699
(
1999
).
36.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
, “
Reversible unfolding of individual titin immunoglobulin domains by AFM
,”
Science
276
,
1109
1112
(
1997
).
37.
X.-J.
Lu
, Detection of multiplets in DSSR; accessed 7 July 2018.
38.
C.
Bustamante
,
S. B.
Smith
,
J.
Liphardt
, and
D.
Smith
, “
Single-molecule studies of DNA mechanics
,”
Curr. Opin. Struct. Biol.
10
,
279
285
(
2000
).
39.
J.
Liphardt
,
B.
Onoa
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Bustamante
, “
Reversible unfolding of single RNA molecules by mechanical force
,”
Science
292
,
733
737
(
2001
).
40.
J.
Liphardt
,
S.
Dumont
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Bustamante
, “
Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality
,”
Science
296
,
1832
1835
(
2002
).
41.
B.
Onoa
,
S.
Dumont
,
J.
Liphardt
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Bustamante
, “
Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme
,”
Science
299
,
1892
1895
(
2003
).
42.
B.
Onoa
and
I.
Tinoco
, Jr.
, “
RNA folding and unfolding
,”
Curr. Opin. Struct. Biol.
14
,
374
379
(
2004
).
43.
D.
Collin
,
F.
Ritort
,
C.
Jarzynski
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Bustamante
, “
Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies
,”
Nature
437
,
231
234
(
2005
).
44.
P. T. X.
Li
,
D.
Collin
,
S. B.
Smith
,
C.
Bustamante
, and
I.
Tinoco
, Jr.
, “
Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods
,”
Biophys. J.
90
,
250
260
(
2006
).
45.
F. M.
Ytreberg
,
R. H.
Swendsen
, and
D. M.
Zuckerman
, “
Comparison of free energy methods for molecular systems
,”
J. Chem. Phys.
125
,
184114
(
2006
).
46.
M.
Arrar
,
F. M.
Boubeta
,
M. E.
Szretter
,
M.
Sued
,
L.
Boechi
, and
D.
Rodriguez
, “
On the accurate estimator of free energies using the Jarzynski equality
,”
J. Comput. Chem.
40
,
688
696
(
2019
).
47.
L. Y.
Chen
,
D. A.
Bastien
, and
H. E.
Espeje
, “
Determination of equilibrium free energy from nonequilibrium work measurements
,”
Phys. Chem. Chem. Phys.
12
,
6579
6582
(
2010
).
48.
H.
Oberhofer
,
C.
Dellago
, and
P. L.
Geissler
, “
Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods?
,”
J. Phys. Chem. B
109
,
6902
6915
(
2005
).

Supplementary Material

You do not currently have access to this content.