Alumina supported Pt nanoclusters under a hydrogen environment play a crucial role in many heterogeneous catalysis applications. We conducted grand canonical genetic algorithm simulations for supported Pt8 clusters in a hydrogen gas environment to study the intracluster, cluster-support, and cluster-adsorbate interactions. Two alumina surfaces, α-Al2O3(0001) and γ-Al2O3(100), and two conditions, T = 600 °C, pH2 = 0.1 bar and T = 25 °C, pH2 = 1.0 bar, were considered corresponding to low and high hydrogen chemical potential μH, respectively. The low free energy ensemble of Pt8 is decorated by a medium (2–12 H), respectively, high (20–30 H), number of hydrogen atoms under equilibrium at low μH, respectively, high μH, and undergoes different morphological transformations on the two surfaces. On α-Al2O3(0001), Pt8 is mostly 3D but very fluxional in structure at low μH and converts to open one-layer 2D structures with minimal fluxionality at high μH, whereas on γ-Al2O3(100), the exact opposite occurs: Pt8 clusters present one-layer 2D shapes at low μH and switch to compact 3D shapes under high μH, during which the Pt8 cluster preserves moderate fluxionality. Further analysis reveals a similar Pt–Pt bond length increase when switching from low μH to high μH on both surfaces although morphological transformations are different. Electronic structure analysis shows the existence of bonding interactions between Pt and Lewis acidic Al3+ sites along with the Pt–O interaction, which implies the necessity to include Al neighbors to discuss the electronic structure of small Pt clusters.

1.
S.
Tosoni
and
G.
Pacchioni
, “
Oxide-supported gold clusters and nanoparticles in catalysis: A computational chemistry perspective
,”
ChemCatChem
11
,
73
89
(
2019
).
2.
R.
Cortese
,
R.
Schimmenti
,
A.
Prestianni
, and
D.
Duca
, “
DFT calculations on subnanometric metal catalysts: A short review on new supported materials
,”
Theor. Chem. Acc.
137
,
59
(
2018
).
3.
C. R.
Henry
, “
Surface studies of supported model catalysts
,”
Surf. Sci. Rep.
31
,
231
325
(
1998
).
4.
A. Y.
Stakheev
and
L.
Kustov
, “
Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s
,”
Appl. Catal., A
188
,
3
35
(
1999
).
5.
D.
Ma
,
Y.
Shu
,
M.
Cheng
,
Y.
Xu
, and
X.
Bao
, “
On the induction period of methane aromatization over Mo-based catalysts
,”
J. Catal.
194
,
105
114
(
2000
).
6.
H.
Jiang
,
L.
Wang
,
W.
Cui
, and
Y.
Xu
, “
Study on the induction period of methane aromatization over Mo/HZSM-5: Partial reduction of Mo species and formation of carbonaceous deposit
,”
Catal. Lett.
57
,
95
102
(
1999
).
7.
M.
Ahmadi
,
H.
Mistry
, and
B.
Roldan Cuenya
, “
Tailoring the catalytic properties of metal nanoparticles via support interactions
,”
J. Phys. Chem. Lett.
7
,
3519
3533
(
2016
).
8.
C.
Mager-Maury
,
C.
Chizallet
,
P.
Sautet
, and
P.
Raybaud
, “
Platinum nanoclusters stabilized on γ-alumina by chlorine used as a capping surface ligand: A density functional theory study
,”
ACS Catal.
2
,
1346
1357
(
2012
).
9.
P.
Raybaud
,
C.
Chizallet
,
C.
Mager-Maury
,
M.
Digne
,
H.
Toulhoat
, and
P.
Sautet
, “
From γ-alumina to supported platinum nanoclusters in reforming conditions: 10years of DFT modeling and beyond
,”
J. Catal.
308
,
328
340
(
2013
).
10.
H.
Tang
,
Y.
Su
,
B.
Zhang
,
A. F.
Lee
,
M. A.
Isaacs
,
K.
Wilson
,
L.
Li
,
Y.
Ren
,
J.
Huang
,
M.
Haruta
 et al., “
Classical strong metal–support interactions between gold nanoparticles and titanium dioxide
,”
Sci. Adv.
3
,
e1700231
(
2017
).
11.
M.
Spencer
, “
Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts
,”
J. Catal.
93
,
216
223
(
1985
).
12.
S.
Tauster
,
S.
Fung
, and
R. L.
Garten
, “
Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide
,”
J. Am. Chem. Soc.
100
,
170
175
(
1978
).
13.
S.
Tauster
and
S.
Fung
, “
Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB
,”
J. Catal.
55
,
29
35
(
1978
).
14.
H.
Pines
and
W. O.
Haag
, “
Alumina: Catalyst and support. I. Alumina, its intrinsic acidity and catalytic activity1
,”
J. Am. Chem. Soc.
82
,
2471
2483
(
1960
).
15.
M.
El Doukkali
,
A.
Iriondo
,
J.
Cambra
,
I.
Gandarias
,
L.
Jalowiecki-Duhamel
,
F.
Dumeignil
, and
P.
Arias
, “
Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production
,”
Appl. Catal., A
472
,
80
91
(
2014
).
16.
M.
Trueba
and
S. P.
Trasatti
, “
γ-Alumina as a support for catalysts: A review of fundamental aspects
,”
Eur. J. Inorg. Chem.
2005
,
3393
3403
.
17.
C.
Chizallet
and
P.
Raybaud
, “
Density functional theory simulations of complex catalytic materials in reactive environments: Beyond the ideal surface at low coverage
,”
Catal. Sci. Technol.
4
,
2797
2813
(
2014
).
18.
A.
Suzuki
,
Y.
Inada
,
A.
Yamaguchi
,
T.
Chihara
,
M.
Yuasa
,
M.
Nomura
, and
Y.
Iwasawa
, “
Time scale and elementary steps of CO-induced disintegration of surface rhodium clusters
,”
Angew. Chem.
42
,
4795
4799
(
2003
).
19.
R.
Ouyang
,
J.-X.
Liu
, and
W.-X.
Li
, “
Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions
,”
J. Am. Chem. Soc.
135
,
1760
1771
(
2013
).
20.
J.
Rousset
,
L.
Stievano
,
F. C. S.
Aires
,
C.
Geantet
,
A.
Renouprez
, and
M.
Pellarin
, “
Hydrogenation of toluene over γ-Al2O3-supported Pt, Pd, and Pd–Pt model catalysts obtained by laser vaporization of bulk metals
,”
J. Catal.
197
,
335
343
(
2001
).
21.
J.
Rousset
,
L.
Stievano
,
F. C. S.
Aires
,
C.
Geantet
,
A.
Renouprez
, and
M.
Pellarin
, “
Hydrogenation of tetralin in the presence of sulfur over γ-Al2O3-supported Pt, Pd, and Pd–Pt model catalysts
,”
J. Catal.
202
,
163
168
(
2001
).
22.
S. D.
Lin
and
M. A.
Vannice
, “
Hydrogenation of aromatic hydrocarbons over supported pt catalysts. I. Benzene hydrogenation
,”
J. Catal.
143
,
539
553
(
1993
).
23.
L.
Castoldi
,
R.
Matarrese
,
M.
Daturi
,
J.
Llorca
, and
L.
Lietti
, “
Al2O3-supported Pt/Rh catalysts for NOx removal under lean conditions
,”
Appl. Catal., A
581
,
43
57
(
2019
).
24.
M.
Kahlich
,
H.
Gasteiger
, and
R.
Behm
, “
Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3
,”
J. Catal.
171
,
93
105
(
1997
).
25.
M.
Moses-DeBusk
,
M.
Yoon
,
L. F.
Allard
,
D. R.
Mullins
,
Z.
Wu
,
X.
Yang
,
G.
Veith
,
G. M.
Stocks
, and
C. K.
Narula
, “
CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3 (010) surface
,”
J. Am. Chem. Soc.
135
,
12634
12645
(
2013
).
26.
O. A.
Bariås
,
A.
Holmen
, and
E. A.
Blekkan
, “
Propane dehydrogenation over supported Pt and Pt–Sn catalysts: Catalyst preparation, characterization, and activity measurements
,”
J. Catal.
158
,
1
12
(
1996
).
27.
J.
Shabaker
,
R.
Davda
,
G.
Huber
,
R.
Cortright
, and
J.
Dumesic
, “
Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts
,”
J. Catal.
215
,
344
352
(
2003
).
28.
M.
García-Diéguez
,
I.
Pieta
,
M.
Herrera
,
M.
Larrubia
, and
L.
Alemany
, “
Nanostructured Pt-and Ni-based catalysts for CO2-reforming of methane
,”
J. Catal.
270
,
136
145
(
2010
).
29.
S.
He
,
C.
Sun
,
Z.
Bai
,
X.
Dai
, and
B.
Wang
, “
Dehydrogenation of long chain paraffins over supported Pt-Sn-K/Al2O3 catalysts: A study of the alumina support effect
,”
Appl. Catal., A
356
,
88
98
(
2009
).
30.
B.
Schimmoeller
,
F.
Hoxha
,
T.
Mallat
,
F.
Krumeich
,
S. E.
Pratsinis
, and
A.
Baiker
, “
Fine tuning the surface acid/base properties of single step flame-made Pt/alumina
,”
Appl. Catal., A
374
,
48
57
(
2010
).
31.
C.
Mager-Maury
,
G.
Bonnard
,
C.
Chizallet
,
P.
Sautet
, and
P.
Raybaud
, “
H2-induced reconstruction of supported pt clusters: Metal–support interaction versus surface hydride
,”
ChemCatChem
3
,
200
207
(
2011
).
32.
C. H.
Hu
,
C.
Chizallet
,
C.
Mager-Maury
,
M.
Corral-Valero
,
P.
Sautet
,
H.
Toulhoat
, and
P.
Raybaud
, “
Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13/γ-Al2O3
,”
J. Catal.
274
,
99
110
(
2010
).
33.
G. S.
Erfani
,
S.
Hong
, and
T. S.
Rahman
, “
Effects of γ-Al2O3 support on the morphology and electronic structure of Pt nanoparticles
,”
J. Phys. Chem. C
123
,
16893
(
2019
).
34.
G.
Sun
and
P.
Sautet
, “
Metastable structures in cluster catalysis from first-principles: Structural ensemble in reaction conditions and metastability triggered reactivity
,”
J. Am. Chem. Soc.
140
,
2812
2820
(
2018
).
35.
E. T.
Baxter
,
M.-A.
Ha
,
A. C.
Cass
,
A. N.
Alexandrova
, and
S. L.
Anderson
, “
Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies
,”
ACS Catal.
7
,
3322
3335
(
2017
).
36.
A.
Gorczyca
,
V.
Moizan
,
C.
Chizallet
,
O.
Proux
,
W.
Del Net
,
E.
Lahera
,
J.-L.
Hazemann
,
P.
Raybaud
, and
Y.
Joly
, “
Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2O3 particles by in situ HERFD–XANES and quantum simulations
,”
Angew. Chem.
126
,
12634
12637
(
2014
).
37.
H.
Mistry
,
F.
Behafarid
,
S. R.
Bare
, and
B.
Roldan Cuenya
, “
Pressure-dependent effect of hydrogen adsorption on structural and electronic properties of Pt/γ-Al2O3 nanoparticles
,”
ChemCatChem
6
,
348
352
(
2014
).
38.
L.
Barrio
,
P.
Liu
,
J.
Rodriguez
,
J.
Campos-Martin
, and
J.
Fierro
, “
A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects
,”
J. Chem. Phys.
125
,
164715
(
2006
).
39.
K. C. C.
Kharas
and
L. F.
Dahl
, “
Ligand-stabilized metal clusters: Structure, bonding, fluxionality, and the metallic state
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
1988
), pp.
1
43
.
40.
M.
Gao
,
A.
Lyalin
,
M.
Takagi
,
S.
Maeda
, and
T.
Taketsugu
, “
Reactivity of gold clusters in the regime of structural fluxionality
,”
J. Phys. Chem. C
119
,
11120
11130
(
2015
).
41.
H.
Zhai
and
A. N.
Alexandrova
, “
Fluxionality of catalytic clusters: When it matters and how to address it
,”
ACS Catal.
7
,
1905
1911
(
2017
).
42.
H.
Zhai
and
A. N.
Alexandrova
, “
Local fluxionality of surface-deposited cluster catalysts: The case of Pt7 on Al2O3
,”
J. Phys. Chem. Lett.
9
,
1696
1702
(
2018
).
43.
H.
Zhai
and
A. N.
Alexandrova
, “
Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization
,”
J. Chem. Theory Comput.
12
,
6213
6226
(
2016
).
44.
B.
Zandkarimi
and
A. N.
Alexandrova
, “
Surface-supported cluster catalysis: Ensembles of metastable states run the show
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
9
,
e1420
(
2019
).
45.
Z.
Zhang
,
E.
Jimenez-Izal
,
I.
Hermans
, and
A. N.
Alexandrova
, “
Dynamic phase diagram of catalytic surface of hexagonal boron nitride under conditions of oxidative dehydrogenation of propane
,”
J. Phys. Chem. Lett.
10
,
20
25
(
2018
).
46.
W. W.
Tipton
and
R. G.
Hennig
, “
A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials
,”
J. Phys.: Condens. Matter
25
,
495401
(
2013
).
47.
L. B.
Vilhelmsen
and
B.
Hammer
, “
A genetic algorithm for first principles global structure optimization of supported nano structures
,”
J. Chem. Phys.
141
,
044711
(
2014
).
48.
A. N.
Alexandrova
,
A. I.
Boldyrev
,
Y.-J.
Fu
,
X.
Yang
,
X.-B.
Wang
, and
L.-S.
Wang
, “
Structure of the NaxClx+1(x = 1–4) clusters via ab initio genetic algorithm and photoelectron spectroscopy
,”
J. Chem. Phys.
121
,
5709
5719
(
2004
).
49.
M.
Digne
,
P.
Sautet
,
P.
Raybaud
,
P.
Euzen
, and
H.
Toulhoat
, “
Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces
,”
J. Catal.
226
,
54
68
(
2004
).
50.
M.
Digne
,
P.
Sautet
,
P.
Raybaud
,
P.
Euzen
, and
H.
Toulhoat
, “
Hydroxyl groups on γ-alumina surfaces: A DFT study
,”
J. Catal.
211
,
1
5
(
2002
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
52.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
53.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
54.
P. J.
Eng
,
T. P.
Trainor
,
G. E.
Brown
, Jr.
,
G. A.
Waychunas
,
M.
Newville
,
S. R.
Sutton
, and
M. L.
Rivers
, “
Structure of the hydrated α-Al2O3 (0001) surface
,”
Science
288
,
1029
1033
(
2000
).
55.
G.
Zhang
,
X.
Wang
,
Y.
Xiong
,
Y.
Shi
,
J.
Song
, and
D.
Luo
, “
Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: A density functional theory study
,”
Int. J. Hydrogen Energy
38
,
1157
1165
(
2013
).
56.
W.
Sinkler
,
S. I.
Sanchez
,
S. A.
Bradley
,
J.
Wen
,
B.
Mishra
,
S. D.
Kelly
, and
S. R.
Bare
, “
Aberration-corrected transmission electron microscopy and in situ XAFS structural characterization of Pt/γ-Al2O3 nanoparticles
,”
ChemCatChem
7
,
3779
3787
(
2015
).
57.
W.
Bronger
and
K.
Wrzesien
, “
The structure of Al3Pt5
,”
J. Alloys Compd.
244
,
194
196
(
1996
).
58.
M.
Devillard
,
R.
Declercq
,
E.
Nicolas
,
A. W.
Ehlers
,
J.
Backs
,
N.
Saffon-Merceron
,
G.
Bouhadir
,
J. C.
Slootweg
,
W.
Uhl
, and
D.
Bourissou
, “
A significant but constrained geometry Pt-Al interaction, fixation of CO2 and CS2, activation of H2 and PhCONH2
,”
J. Am. Chem. Soc.
138
,
4917
4926
(
2016
).
59.
J. H.
Kang
,
L. D.
Menard
,
R. G.
Nuzzo
, and
A. I.
Frenkel
, “
Unusual non-bulk properties in nanoscale materials: Thermal metal-metal bond contraction of γ-alumina-supported Pt catalysts
,”
J. Am. Chem. Soc.
128
,
12068
12069
(
2006
).
60.
H.-Y. T.
Chen
,
S.
Tosoni
, and
G.
Pacchioni
, “
Hydrogen adsorption, dissociation, and spillover on Ru10 clusters supported on anatase TiO2 and tetragonal ZrO2 (101) surfaces
,”
ACS Catal.
5
,
5486
5495
(
2015
).
61.
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets
,”
J. Phys. Chem. A
115
,
5461
5466
(
2011
).
62.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
,”
J. Comput. Chem.
34
,
2557
2567
(
2013
).
63.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
,”
J. Comput. Chem.
37
,
1030
1035
(
2016
).
64.
R.
Hoffmann
, “
A chemical and theoretical way to look at bonding on surfaces
,”
Rev. Mod. Phys.
60
,
601
(
1988
).
65.
J. J.
Sattler
,
J.
Ruiz-Martinez
,
E.
Santillan-Jimenez
, and
B. M.
Weckhuysen
, “
Catalytic dehydrogenation of light alkanes on metals and metal oxides
,”
Chem. Rev.
114
,
10613
10653
(
2014
).

Supplementary Material

You do not currently have access to this content.