There has been a tremendous effort in accessing liquid-phase solvation dynamics using ultrafast spectroscopies for decades. It is recently demonstrated that one can go beyond tracking the relaxation of the solute-solvent interaction energy as reported in traditional time-dependent fluorescence spectroscopy. Combining a resonant solute pump with a subsequent nonresonant 4-wave-mixing light-scattering solvent probe gives rise to two-dimensional solute-pump/solvent probe (SPSP) spectroscopy, which displays the nonequilibrium relaxation of the intermolecular vibrations after the solute gets electronically excited. However, the response function of the SPSP spectra has been challenging to calculate, even on the classical-mechanical level, due to the difficulty of evaluating the surviving Poisson bracket. In this work, a hybrid equilibrium-nonequilibrium molecular dynamics simulation approach is proposed where the Poisson bracket can be estimated using nonequilibrium molecular dynamics. Applying the resulting numerically exact formalism and the previously proposed hybrid instantaneous-normal-mode/molecular-dynamics approach to a preferential solvation model system reveals that the SPSP spectroscopy provides an alternative measure for solvation dynamics, which is more sensitive to the local solvent structures than the traditional energetic dynamics measured in the time-dependent fluorescence spectroscopy.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
2.
R. M.
Stratt
and
M.
Maroncelli
,
J. Phys. Chem.
100
,
12981
(
1996
).
3.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
4.
E. A.
Carter
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
5961
(
1991
).
5.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
,
471
(
1994
).
6.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
7.
M.
Cho
,
J. Y.
Yu
,
T. H.
Joo
,
Y.
Nagasawa
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Phys. Chem.
100
,
11944
(
1996
).
8.
G. R.
Fleming
,
S. A.
Passino
, and
Y.
Nagasawa
,
Philos. Trans. R. Soc. London, Ser. A
356
,
389
(
1998
).
9.
D. M.
Willard
and
N. E.
Levinger
,
J. Phys. Chem. B
104
,
11075
(
2000
).
10.
J.
Faeder
and
B. M.
Ladanyi
,
J. Phys. Chem. B
104
,
1033
1046
(
2000
).
11.
M. D.
Fayer
and
N. E.
Levinger
,
Annu. Rev. Anal. Chem.
3
,
89
(
2010
).
12.
S. K.
Pal
,
J.
Peon
,
B.
Bagchi
, and
A. H.
Zewail
,
J. Phys. Chem. B
106
,
12376
(
2002
).
13.
K. E.
Furse
and
S. A.
Corcelli
,
J. Am. Chem. Soc.
130
,
13103
(
2008
).
14.
K. E.
Furse
and
S. A.
Corcelli
,
J. Phys. Chem. Lett.
1
,
1813
(
2010
).
15.
D.
McMorrow
,
W. T.
Lotshaw
, and
G. A.
Kenney-Wallace
,
IEEE J. Quantum Electron.
24
,
443
(
1988
).
16.
S.
Ryu
and
R. M.
Stratt
,
J. Phys. Chem. B
108
,
6782
(
2004
).
17.
N. T.
Hunt
,
A. A.
Jaye
, and
S. R.
Meech
,
Phys. Chem. Chem. Phys.
9
,
2167
(
2007
).
18.
Q.
Zhong
and
J. T.
Fourkas
,
J. Phys. Chem. B
112
,
15529
(
2008
).
19.
E. J.
Brown
,
Q.
Zhang
, and
M.
Dantus
,
J. Chem. Phys.
110
,
5772
(
1999
).
20.
S.
Park
,
J.-S.
Park
, and
T.
Joo
,
J. Phys. Chem. A
115
,
3973
(
2011
).
21.
X.
Sun
and
R. M.
Stratt
,
Phys. Chem. Chem. Phys.
14
,
6320
(
2012
).
22.
X.
Sun
and
R. M.
Stratt
,
J. Chem. Phys.
139
,
044506
(
2013
).
23.
X.
Sun
,
B. M.
Ladanyi
, and
R. M.
Stratt
,
J. Phys. Chem. B
119
,
9129
(
2015
).
24.
A. M.
Moran
,
S.
Park
, and
N. F.
Scherer
,
Chem. Phys.
341
,
344
(
2007
).
25.
A. M.
Moran
,
R. A.
Nome
, and
N. F.
Scherer
,
J. Chem. Phys.
127
,
184505
(
2007
).
26.
A. M.
Moran
,
S.
Park
, and
N. F.
Scherer
,
J. Phys. Chem. B
110
,
19771
(
2006
).
27.
S.
Park
,
J.
Kim
,
A. M.
Moran
, and
N. F.
Scherer
,
Phys. Chem. Chem. Phys.
13
,
214
(
2011
).
28.
S.
Park
,
J.
Kim
, and
N. F.
Scherer
,
Phys. Chem. Chem. Phys.
14
,
8116
(
2012
).
29.
D. F.
Underwood
and
D. A.
Blank
,
J. Phys. Chem. A
107
,
956
(
2003
).
30.
S. J.
Schmidtke
,
D. F.
Underwood
, and
D. A.
Blank
,
J. Am. Chem. Soc.
126
,
8620
(
2004
).
31.
D. F.
Underwood
and
D. A.
Blank
,
J. Phys. Chem. A
109
,
3295
(
2005
).
32.
S. J.
Schmidtke
,
D. F.
Underwood
, and
D. A.
Blank
,
J. Phys. Chem. A
109
,
7033
(
2005
).
33.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
34.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
35.
T. l. C.
Jansen
,
S.
Saito
,
J.
Jeon
, and
M.
Cho
,
J. Chem. Phys.
150
,
100901
(
2019
).
36.
A.
Ma
and
R. M.
Stratt
,
J. Chem. Phys.
116
,
4962
(
2002
).
37.
R.
DeVane
,
C.
Ridley
,
B.
Space
, and
T.
Keyes
,
J. Chem. Phys.
119
,
6073
(
2003
).
38.
R.
DeVane
,
C.
Ridley
,
B.
Space
, and
T.
Keyes
,
Phys. Rev. E
70
,
050101
(
2004
).
39.
R.
DeVane
,
C.
Ridley
,
B.
Space
, and
T.
Keyes
,
J. Chem. Phys.
123
,
194507
(
2005
).
40.
R.
DeVane
,
C.
Kasprzyk
,
B.
Space
, and
T.
Keyes
,
J. Phys. Chem. B
110
,
3773
(
2006
).
41.
R.
DeVane
,
B.
Space
,
T. l.
Jansen
, and
T.
Keyes
,
J. Chem. Phys.
125
,
234501
(
2006
).
42.
S.
Mukamel
,
V.
Khidekel
, and
V.
Chernyak
,
Phys. Rev. E
53
,
R1
(
1996
).
43.
R. M.
Stratt
,
Acc. Chem. Res.
28
,
201
(
1995
).
44.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
074512
(
2006
).
45.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Chem. Phys.
141
,
124503
(
2014
).
46.
H.
Ito
,
J.-Y.
Jo
, and
Y.
Tanimura
,
Struct. Dyn.
2
,
054102
(
2015
).
47.
T.
Yagasaki
and
S.
Saito
,
Acc. Chem. Res.
42
,
1250
(
2009
).
48.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
,
307
(
2000
).
49.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
114
,
10910
(
2001
).
50.
T. l. C.
Jansen
,
M.
Swart
,
L.
Jensen
,
P. T.
van Duijnen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
116
,
3277
(
2002
).
51.
T. l. C.
Jansen
,
K.
Duppen
, and
J. G.
Snijders
,
Phys. Rev. B
67
,
134206
(
2003
).
52.
B. M.
Luther
,
J. R.
Kimmel
, and
N. E.
Levinger
,
J. Chem. Phys.
116
,
3370
(
2002
).
53.
B. M.
Ladanyi
and
B. C.
Perng
,
J. Phys. Chem. A
106
,
6922
(
2002
).
54.
N.
Agmon
,
J. Phys. Chem. A
106
,
7256
(
2002
).
55.
C. N.
Nguyen
and
R. M.
Stratt
,
J. Chem. Phys.
133
,
124503
(
2010
).
56.
A. E.
Bragg
,
G. U.
Kanu
, and
B. J.
Schwartz
,
J. Phys. Chem. Lett.
2
,
2797
(
2011
).
57.
J. A.
Dunbar
,
E. J.
Arthur
,
A. M.
White
, and
K. J.
Kubarych
,
J. Phys. Chem. B
119
,
6271
(
2015
).
58.
H.
Goldstein
,
C. P.
Poole
, Jr.
, and
J. L.
Safko
, in
Classical Mechanics
, 3rd ed. (
Addison-Wesley
,
Cambridge, MA
,
2002
), Chap. 9, pp.
388
408
.
59.
D. A.
McQuarrie
, in
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
), Chap. 21, pp.
507
509
.
60.
P. A.
Madden
, in
Liquids, Freezing, and the Glass Transition
, edited by
J. P.
Hansen
,
D.
Levesques
, and
J.
Zinn-Justin
(
North-Holland
,
Amsterdam
,
1991
), pp.
547
627
.
61.
J. T.
Fourkas
, in
Ultrafast Infrared and Raman Spectroscopy
, edited by
M. D.
Fayer
(
Marcel Dekker
,
New York
,
2001
).
62.
M.
Buchner
,
B. M.
Ladanyi
, and
R. M.
Stratt
,
J. Chem. Phys.
97
,
8522
(
1992
).
63.
R. E.
Larsen
,
G.
Goodyear
, and
R. M.
Stratt
,
J. Chem. Phys.
104
,
2987
(
1996
).
64.
B. M.
Ladanyi
and
R. M.
Stratt
,
J. Phys. Chem.
99
,
2502
(
1995
).
65.
B. M.
Ladanyi
and
R. M.
Stratt
,
J. Phys. Chem.
100
,
1266
(
1996
).
66.
A.
Ma
and
R. M.
Stratt
,
J. Chem. Phys.
116
,
4972
(
2002
).
67.
P. A. M.
Dirac
, in
The Principles of Quantum Mechanics
, 4th ed. (
Clarendon Press
,
Oxford
,
1958
), Chap. 4, pp.
84
89
.
68.
S.
Mukamel
and
J. B.
Maddox
,
J. Chem. Phys.
121
,
36
(
2004
).
69.
M.
Sakurai
and
A.
Yoshimori
,
J. Chem. Phys.
122
,
104509
(
2005
).
70.
M. P.
Allen
and
D. J.
Tildesley
, in
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
), Chap. 3.
71.
X.
Sun
, Ph.D. thesis,
Brown University
,
2014
.
72.
L. C.
Geiger
and
B. M.
Ladanyi
,
J. Chem. Phys.
89
,
6588
(
1988
).
73.
R. L.
Murry
and
J. T.
Fourkas
,
J. Chem. Phys.
107
,
9726
(
1997
).
74.
A.
Ma
and
R. M.
Stratt
,
J. Chem. Phys.
119
,
8500
(
2003
).
75.
B. B.
Laird
and
W. H.
Thompson
,
J. Chem. Phys.
126
,
211104
(
2007
).
76.
B. B.
Laird
and
W. H.
Thompson
,
J. Chem. Phys.
135
,
084511
(
2011
).
77.
S.
Ahmed
,
A.
Pasti
,
R. J.
Fernández-Terán
,
G.
Ciardi
,
A.
Shalit
, and
P.
Hamm
,
J. Chem. Phys.
148
,
234505
(
2018
).
78.
J.
Bredenbeck
,
J.
Helbing
, and
P.
Hamm
,
J. Am. Chem. Soc.
126
,
990
(
2004
).
79.
L. M.
Kiefer
,
J. T.
King
, and
K. J.
Kubarych
,
J. Phys. Chem. A
118
,
9853
(
2014
).
80.
D.
Zhuang
,
M.
Riera
,
G. K.
Schenter
,
J. L.
Fulton
, and
F.
Paesani
,
J. Phys. Chem. Lett.
10
,
406
(
2019
).
81.
N. M.
Correa
,
J. J.
Silber
,
R. E.
Riter
, and
N. E.
Levinger
,
Chem. Rev.
112
,
4569
(
2012
).
82.
V. P.
Roy
and
K. J.
Kubarych
,
J. Phys. Chem. B
121
,
9621
(
2017
).
83.
K. A.
Jung
,
P. E.
Videla
, and
V. S.
Batista
,
J. Chem. Phys.
148
,
244105
(
2018
).
84.
X.
Sun
and
E.
Geva
,
J. Chem. Theory Comput.
12
,
2926
(
2016
).
85.
X.
Sun
,
P.
Zhang
,
Y.
Lai
,
K. L.
Williams
,
M. S.
Cheung
,
B. D.
Dunietz
, and
E.
Geva
,
J. Phys. Chem. C
122
,
11288
(
2018
).
86.
T.
Wang
,
X.
Su
,
X.
Zhang
,
W.
Huang
,
L.
Huang
,
X.
Zhang
,
X.
Sun
,
Y.
Luo
, and
G.
Zhang
,
J. Mater. Chem. C
7
,
9917
(
2019
).
87.
M. H.
Lee
,
E.
Geva
, and
B. D.
Dunietz
,
J. Phys. Chem. C
118
,
9780
(
2014
).
88.
K.
Hu
,
A. D.
Blair
,
E. J.
Piechota
,
P. A.
Schauer
,
R. N.
Sampaio
,
F. G. L.
Parlane
,
G. J.
Meyer
, and
C. P.
Berlinguette
,
Nat. Chem.
8
,
853
(
2016
).
89.
B.
Xiang
,
Y.
Li
,
C. H.
Pham
,
F.
Paesani
, and
W.
Xiong
,
Sci. Adv.
3
,
e1701508
(
2017
).
You do not currently have access to this content.