Amphiphilic molecules such as dimethyl sulfoxide (DMSO) and its aqueous binary mixtures exhibit pronounced nonideality in composition dependence of several static and dynamic properties. We carry out detailed molecular dynamics simulations to calculate various properties including viscosity of the mixture and combine the results with a mode coupling theory analysis to show that this nonideality can be attributed to local structures that are stable on a short time scale but transient on a long time scale to maintain the large scale homogeneity of the solution. Although the existence of such quasistable structures has been deciphered from spectroscopy, a detailed characterization does not exist. We calculate stress-stress autocorrelation functions (SACFs) of water-DMSO binary mixtures. We employ two different models of water, SPC/E and TIP4P/2005, to check the consistency of our results. Viscosity shows a pronounced nonmonotonic composition dependence. The calculated values are in good agreement with the experimental results. Fourier transform of SACF provides frequency-dependent viscosity. The frequency-dependent viscosity (that is, viscoelasticity) is also found to be strongly dependent on composition. Viscoelasticity exhibits sharp peaks due to intramolecular vibrational modes of DMSO, which are also seen in the density of states. We evaluate the wavenumber dependent dynamic structure factor and wavenumber dependent relaxation time. The latter also exhibits a sharp nonmonotonic composition dependence. The calculated dynamic structure factor is used in mode coupling theory expression of viscosity to obtain a semiquantitative understanding of anomalous composition dependence of viscosity. Both the self-diffusion coefficients and rotational correlation times of water and DMSO molecules exhibit nonmonotonic composition dependence.

1.
B.
Bagchi
,
Statistical Mechanics for Chemistry and Materials Science
(
Francis-Taylor, CRC Press
,
2018
).
2.
B.
Bagchi
,
Water in Biological and Chemical Processes from Structure and Dynamics to Function
(
Cambridge University Press
,
2013
).
3.
F.
He
,
W.
Liu
,
S.
Zheng
,
L.
Zhou
,
B.
Ye
, and
Z.
Qi
,
Mol. Membr. Biol.
29
,
107
(
2012
).
4.
Y. F.
Hu
,
W. J.
Lv
,
S.
Zhao
,
Y. Z.
Shang
,
H. L.
Wang
, and
H. L.
Liu
,
Chem. Eng. Sci.
134
,
813
(
2015
).
5.
E. E.
Rosenbaum
,
R. J.
Herschler
, and
S. W.
Jacob
,
JAMA
192
,
309
(
1965
).
6.
Z. W.
Yu
and
P. J.
Quinn
,
Biosci. Rep.
14
,
259
(
1994
).
7.
D. H.
Rammler
and
A.
Zaffaroni
,
Ann. N. Y. Acad. Sci.
141
,
13
(
1967
).
8.
D. H.
Rasmussen
and
A. P.
MacKenzie
,
Nature
220
,
1315
(
1968
).
9.
A.
Luzar
and
D.
Chandler
,
J. Chem. Phys.
98
,
8160
(
1993
).
10.
C.
Nieto-Draghi
,
J. B.
Ávalos
, and
B.
Rousseau
,
J. Chem. Phys.
119
,
4782
(
2003
).
11.
D. P.
Geerke
,
C.
Oostenbrink
,
N. F. A.
van der Vegt
, and
W. F.
van Gunsteren
,
J. Phys. Chem. B
108
,
1436
(
2004
).
12.
D. B.
Wong
,
K. P.
Sokolowsky
,
M. I.
El-Barghouthi
,
E. E.
Fenn
,
C. H.
Giammanco
,
A. L.
Sturlaugson
, and
M. D.
Fayer
,
J. Phys. Chem. B
116
,
5479
(
2012
).
14.
A.
Luzar
,
J. Chem. Phys.
91
,
3603
(
1989
).
15.
S.
Chowdhuri
and
A.
Chandra
,
J. Chem. Phys.
119
,
4360
(
2003
).
16.
R.
Gupta
and
A.
Chandra
,
J. Comput. Chem.
32
,
2679
(
2011
).
17.
S.
Roy
and
B.
Bagchi
,
J. Chem. Phys.
139
,
034308
(
2013
).
18.
M. K.
Hazra
and
B.
Bagchi
,
J. Chem. Phys.
149
,
084501
(
2018
).
19.
R.
Biswas
and
B.
Bagchi
,
J. Phys. Chem. A
103
,
2495
(
1999
).
20.
S.
Nandi
,
S.
Parui
,
R.
Halder
,
B.
Jana
, and
K.
Bhattacharyya
,
Biophys. Rev.
10
,
757
(
2018
).
21.
I. A.
Borin
and
M. S.
Skaf
,
J. Chem. Phys.
110
,
6412
(
1999
).
23.
S.
Banerjee
,
S.
Roy
, and
B.
Bagchi
,
J. Chem. Phys. B
114
,
12875
(
2010
).
24.
P. P.
Wiewiór
,
H.
Shirota
, and
E. W.
Castner
,
J. Chem. Phys.
116
,
4643
(
2002
).
25.
M. K.
Hazra
and
B.
Bagchi
,
J. Chem. Phys.
146
,
024505
(
2017
).
26.
B.
Bagchi
,
Molecular Relaxation in Liquids
(
Oxford University Press
,
USA
,
2012
).
27.
J. P.
Hansen
and
J. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
New York
,
1976
).
28.
D. D.
Joseph
,
Fluid Dynamics of Viscoelastic Liquids
(
Springer-Verlag Berlin Heidelberg GmbH
,
1990
).
29.
P. P.
Jose
and
B.
Bagchi
,
J. Chem. Phys.
121
,
6978
(
2004
).
30.
Y.
Pomeau
and
P.
Résibois
,
Phys. Rep.
19
,
63
(
1975
).
31.
S.
Bhattacharyya
and
B.
Bagchi
,
J. Chem. Phys.
109
,
7885
(
1998
).
32.
M.
Berg
,
J. Phys. Chem. A
102
,
17
(
1998
).
33.
R.
Biswas
and
B.
Bagchi
,
J. Chem. Phys.
105
,
7543
(
1996
).
34.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindah
,
SoftwareX
1-2
,
19
(
2015
).
35.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
36.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
37.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
25
,
1656
(
2004
).
38.
D. J.
Evans
and
B. L.
Holian
,
J. Chem. Phys.
83
,
4069
(
1985
).
39.
W. F.
van Gunsteren
and
H. J. C.
Brerndsen
,
Mol. Simul.
1
,
173
(
1988
).
40.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
41.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
(
Cambridge University Press
,
1992
).
42.
M.
González
and
J.
Abascal
,
J. Chem. Phys.
132
,
096101
(
2010
).
43.
S. J.
Bachmann
and
W. F.
Van Gunsteren
,
J. Phys. Chem. B
118
,
10175
(
2014
).
44.
J. M. G.
Cowie
and
P. M.
Toporowski
,
Can. J. Chem.
39
,
2240
(
1961
).
45.
A.
Luzar
,
Faraday Discuss.
103
,
29
(
1996
).
46.
A.
Luzar
,
A. K.
Soper
, and
D.
Chandler
,
J. Chem. Phys.
99
,
6836
(
1993
).
47.
A.
Vishnyakov
,
A. P.
Lyubartsev
, and
A.
Laaksonen
,
J. Phys. Chem. A
105
,
1702
(
2001
).
48.
H.
Bertagnolli
,
E.
Schultz
, and
P.
Chieux
,
Ber. Bunsen-Ges. Phys. Chem.
93
,
88
(
1989
).
49.
I. I.
Vaisman
and
M. L.
Berkowitz
,
J. Am. Chem. Soc.
114
,
7889
(
1992
).
50.
K. J.
Packer
and
D. J.
Tomlinson
,
Trans. Faraday Soc.
67
,
1302
(
1971
).
51.
S.
Sarkar
and
B.
Bagchi
,
Phys. Rev. E
83
,
031506
(
2011
).
52.
A.
Mukherjee
,
G.
Srinivas
,
S.
Bhattacharyya
, and
B.
Bagchi
,
J. Chem. Sci.
113
,
393
(
2001
).
53.
S. E.
Abraham
,
D.
Chakrabarti
, and
B.
Bagchi
,
J. Chem. Phys.
126
,
074501
(
2007
).
54.
R.
Ghosh
,
S.
Banerjee
,
S.
Chakrabarty
, and
B.
Bagchi
,
J. Phys. Chem. B
115
,
7612
(
2011
).
55.
S.
Roy
,
S.
Banerjee
,
N.
Biyani
,
B.
Jana
, and
B.
Bagchi
,
J. Phys. Chem. B
115
,
685
(
2011
).
56.
S.
Sarkar
,
S.
Banerjee
,
S.
Roy
,
R.
Ghosh
,
P. P.
Ray
, and
B.
Bagchi
,
J. Chem. Sci.
127
,
49
(
2015
).
57.
S.
Ghosh
,
S.
Chattoraj
,
R.
Chowdhury
, and
K.
Bhattacharyya
,
RSC Adv.
4
,
14378
(
2014
).
58.
R.
Gupta
and
A.
Chandra
,
J. Chem. Phys.
127
,
024503
(
2007
).
59.
C.
Frez
and
G. J.
Diebold
,
J. Chem. Phys.
129
,
184506
(
2008
).
60.
U.
Balucani
,
R.
Vallauri
, and
T.
Gaskell
,
Phys. Rev. A
37
,
3386
(
1988
).
61.
B.
Bagchi
and
S.
Bhattacharyya
,
Adv. Chem. Phys.
116
,
67
(
2007
).
62.
J.
Bosse
,
W.
Gotze
, and
M.
Luce
,
Phys. Rev. A
17
,
434
(
1978
).
63.
T.
Gezsti
,
J. Phys. C: Solid State Phys.
16
,
5805
(
1983
).
64.
A.
Mukherjee
,
G.
Srinivas
, and
B.
Bagchi
,
Phys. Rev. Lett.
86
,
5926
(
2001
).
65.
G.
Srinivas
,
A.
Mukherjee
, and
B.
Bagchi
,
J. Chem. Phys.
114
,
6220
(
2001
).
66.
L.
Sjogren
and
A.
Sjolander
,
J. Phys. C: Solid State Phys.
12
,
4369
(
1979
).
67.
R.
Zwanzig
and
R. D.
Mountain
,
J. Chem. Phys.
43
,
4464
(
1965
).
68.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
69.
N. K.
Ailawadi
,
A.
Rahman
, and
R.
Zwanzig
,
Phys. Rev. A
4
,
1616
(
1971
).
71.
T.
Yamaguchi
and
F.
Hirata
,
J. Chem. Phys.
115
,
9340
(
2001
).
72.
N. E.
Moe
and
M. D.
Ediger
,
Phys. Rev. E
59
,
623
(
1999
).
73.
S.
Banerjee
and
B.
Bagchi
,
J. Chem. Phys.
139
,
164301
(
2013
).

Supplementary Material

You do not currently have access to this content.