We study, experimentally and theoretically, the ionization probability of singly halogenated methane molecules, CH3Cl and CH3Br, in intense linearly polarized 800 nm laser pulses as a function of the angle between the molecular axis and the laser polarization. Experimentally, the molecules are exposed to two laser pulses with a relative time delay. The first, weaker pulse induces a nuclear rotational wave packet within the molecules, which are then ionized by the second, stronger pulse. The angle-dependent ionization yields are extracted from fits of the measured delay-dependent ionization signal to a superposition of moments of the rotational wave packet’s angular distribution. Angle-dependent strong-field ionization (SFI) yields are also calculated using time-dependent density functional theory. Good agreement between measurements and theory is obtained. Interestingly, we find a marked difference between the angle-dependence of the ionization yields for these two halomethane species despite the similar structure of their highest occupied molecular orbitals. Calculations reveal that these differences are a result of multichannel (CH3Cl) vs single-channel (CH3Br) ionization and of increased hole localization on Br vs Cl. By adding calculations for CH3F, we can discern clear trends in the ionization dynamics with increasing halogen mass. These results are illustrative, as chemical functionalization and molecular alignment are likely to be important parameters for initiating and controlling charge migration dynamics via SFI.

1.
X. M.
Tong
,
Z. X.
Zhao
, and
C. D.
Lin
, “
Theory of molecular tunneling ionization
,”
Phys. Rev. A
66
,
033402
(
2002
).
2.
I. V.
Litvinyuk
,
K. F.
Lee
,
P. W.
Dooley
,
D. M.
Rayner
,
D. M.
Villeneuve
, and
P. B.
Corkum
, “
Alignment-dependent strong field ionization of molecules
,”
Phys. Rev. Lett.
90
,
233003
(
2003
).
3.
D.
Pinkham
and
R. R.
Jones
, “
Intense laser ionization of transiently aligned CO
,”
Phys. Rev. A
72
,
023418
(
2005
).
4.
D.
Pavičić
,
K. F.
Lee
,
D. M.
Rayner
,
P. B.
Corkum
, and
D. M.
Villeneuve
, “
Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields
,”
Phys. Rev. Lett.
98
,
243001
(
2007
).
5.
E. P.
Fowe
and
A. D.
Bandrauk
, “
Nonperturbative time-dependent density-functional theory of ionization and harmonic generation in OCS and CS2 molecules with ultrashort intense laser pulses: Intensity and orientational effects
,”
Phys. Rev. A
84
,
035402
(
2011
).
6.
J. L.
Hansen
,
L.
Holmegaard
,
J. H.
Nielsen
,
H.
Stapelfeldt
,
D.
Dimitrovski
, and
L. B.
Madsen
, “
Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules
,”
J. Phys. B: At., Mol. Opt. Phys.
45
,
015101
(
2012
).
7.
E. P.
Fowe
and
A. D.
Bandrauk
, “
Nonperturbative time-dependent density functional theory (TDDFT) and time-dependent electron localization function (TDELF) study of the ionization of OCS and CS2 with ultrashort intense laser pulses
,”
Can. J. Chem.
90
,
616
(
2012
).
8.
L. B.
Madsen
,
F.
Jensen
,
O. I.
Tolstikhin
, and
T.
Morishita
, “
Structure factors for tunneling ionization rates of molecules
,”
Phys. Rev. A
87
,
013406
(
2013
).
9.
A.
Russakoff
,
S.
Bubin
,
X.
Xie
,
S.
Erattupuzha
,
M.
Kitzler
, and
K.
Varga
, “
Time-dependent density-functional study of the alignment-dependent ionization of acetylene and ethylene by strong laser pulses
,”
Phys. Rev. A
91
,
023422
(
2015
).
10.
S. G.
Walt
,
N. B.
Ram
,
A. v.
Conta
,
O. I.
Tolstikhin
,
L. B.
Madsen
,
F.
Jensen
, and
H. J.
Wörner
, “
Role of multi-electron effects in the asymmetry of strong-field ionization and fragmentation of polar molecules: The methyl halide series
,”
J. Phys. Chem. A
119
,
11772
11782
(
2015
).
11.
R.
Johansen
,
K. G.
Bay
,
L.
Christensen
,
J.
Thøgersen
,
D.
Dimitrovski
,
L. B.
Madsen
, and
H.
Stapelfeldt
, “
Alignment-dependent strong-field ionization yields of carbonyl sulfide molecules induced by mid-infrared laser pulses
,”
J. Phys. B: At., Mol. Opt. Phys.
49
,
205601
(
2016
).
12.
V.
Makhija
,
X.
Ren
,
D.
Gockel
,
A.-T.
Le
, and
V.
Kumarappan
, “
Orientation resolution through rotational coherence spectroscopy
,” e-print arXiv:1611.06476v2 (
2016
).
13.
K. J.
Schafer
,
B.
Yang
,
L. F.
DiMauro
, and
K. C.
Kulander
, “
Above threshold ionization beyond the high harmonic cutoff
,”
Phys. Rev. Lett.
70
,
1599
(
1993
).
14.
P. B.
Corkum
, “
Plasma perspective on strong field multiphoton ionization
,”
Phys. Rev. Lett.
71
,
1994
(
1993
).
15.
P. B.
Corkum
and
F.
Krausz
, “
Attosecond science
,”
Nat. Phys.
3
,
381
(
2007
).
16.
F.
Krausz
and
M.
Ivanov
, “
Attosecond physics
,”
Rev. Mod. Phys.
81
,
163
(
2009
).
17.
M.
Meckel
,
D.
Comtois
,
D.
Zeidler
,
A.
Staudte
,
D.
Pavičić
,
D. H. C.
Bandulet
,
H.
Pépin
,
J. C.
Kieffer
,
R.
Dörner
,
D. M.
Villeneuve
, and
P. B.
Corkum
, “
Laser-induced electron tunneling and diffraction
,”
Science
320
,
1478
(
2008
).
18.
C. I.
Blaga
,
J.
Xu
,
A. D.
DiChiara
,
E.
Sistrunk
,
K.
Zhang
,
P.
Agostini
,
T. A.
Miller
,
L. F.
DiMauro
, and
C. D.
Lin
, “
Imaging ultrafast molecular dynamics with laser-induced electron diffraction
,”
Nature
483
,
194
(
2012
).
19.
J.
Xu
,
C. I.
Blaga
,
K.
Zhang
,
Y. H.
Lai
,
C. D.
Lin
,
T. A.
Miller
,
P.
Agostini
, and
L. F.
DiMauro
, “
Diffraction using laser-driven broadband electron wave packets
,”
Nat. Commun.
5
,
4635
(
2014
).
20.
P.
Sándor
,
A.
Sissay
,
F.
Mauger
,
P. M.
Abanador
,
T. T.
Gorman
,
T. D.
Scarborough
,
M. B.
Gaarde
,
K.
Lopata
,
K. J.
Schafer
, and
R. R.
Jones
, “
Angle dependence of strong-field single and double ionization of carbonyl sulfide
,”
Phys. Rev. A
98
,
043425
(
2018
).
21.
P.
Hoerner
and
H. B.
Schlegel
, “
Angular dependence of strong field ionization of CH3X (X = F, Cl, Br, or I) using time-dependent configuration interaction with an absorbing potential
,”
J. Phys. Chem. A
121
,
5940
5946
(
2017
).
22.
S. M.
Hankin
,
D. M.
Villeneuve
,
P. B.
Corkum
, and
D. M.
Rayner
, “
Intense-field laser ionization rates in atoms and molecules
,”
Phys. Rev. A
64
,
013405
(
2001
).
23.
S.
Luo
,
W.
Hu
,
J.
Yu
,
X.
Li
,
L.
He
,
C.
Wang
,
F.
Liu
, and
D.
Ding
, “
Multielectron effects in the strong field sequential ionization of aligned CH3I molecules
,”
J. Phys. Chem. A
121
,
6547
6553
(
2017
).
24.
A. H.
Winney
,
G.
Basnayake
,
D. A.
Debrah
,
Y. F.
Lin
,
S. K.
Lee
,
P.
Hoerner
,
Q.
Liao
,
H. B.
Schlegel
, and
W.
Li
, “
Disentangling strong-field multielectron dynamics with angular streaking
,”
J. Phys. Chem. Lett.
9
,
2539
2545
(
2018
).
25.
C.
Marceau
,
V.
Makhija
,
D.
Platzer
,
A. Y.
Naumov
,
P. B.
Corkum
,
A.
Stowlow
,
D. M.
Villeneuve
, and
P.
Hockett
, “
Molecular frame reconstruction using time-domain photoionization interferometry
,”
Phys. Rev. Lett.
119
,
083401
(
2017
).
26.
R.
Trebino
,
K. W.
DeLong
,
D. N.
Fittinghoff
,
J. N.
Sweetser
,
M. A.
Krumbügel
,
B. A.
Richman
, and
D. J.
Kane
, “
Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating
,”
Rev. Sci. Instrum.
68
,
3277
3295
(
1997
).
27.
U.
Even
,
J.
Jortner
,
D.
Noy
,
N.
Lavie
, and
C.
Cossart-Magos
, “
Cooling of large molecules below 1K and He clusters formation
,”
J. Chem. Phys.
112
,
8068
8071
(
2000
).
28.
K.
Egodapitiya
,
S.
Li
, and
R. R.
Jones
, “
Terahertz-induced field-free orientation of rotationally excited molecules
,”
Phys. Rev. Lett.
112
,
103002
(
2014
).
29.
M.
Buyong
,
L.
Jenn-Huei
, and
N. L.
Allinger
, “
Molecular polarizabilities and induced dipole moments in molecular mechanics
,”
J. Comput. Chem.
21
,
813
825
(
2000
).
30.
NIST computational chemistry comparison and benchmark database
,” in
NIST Standard Reference Database Number 101, Release 19
, edited by
R. D.
Johnson
 III
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
).
31.
R.
Bocquet
,
D.
Boucher
,
J.
Demaison
,
G.
Wlodarczak
, and
G.
Graner
, “
The ground-state rotational constants of methyl bromide
,”
Europhys. Lett.
2
,
275
(
1986
).
32.
H.
Ohmura
,
F.
Ito
, and
M.
Tachiya
, “
Phase-sensitive molecular ionization induced by a phase-controlled two-color laser field in methyl halides
,”
Phys. Rev. A
74
,
043410
(
2006
).
33.
J.
Theilhaber
, “
Ab initio simulations of sodium using time-dependent density-functional theory
,”
Phys. Rev. B
46
,
12990
13003
(
1992
).
34.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
4487
(
1996
).
35.
X.
Li
,
S. M.
Smith
,
A. N.
Markevitch
,
D. A.
Romanov
,
R. J.
Levis
, and
H. B.
Schlegel
, “
A time-dependent Hartree–Fock approach for studying the electronic optical response of molecules in intense fields
,”
Phys. Chem. Chem. Phys.
7
,
233
239
(
2005
).
36.
W.
Liang
,
C. T.
Chapman
, and
X.
Li
, “
Efficient first-principles electronic dynamics
,”
J. Chem. Phys.
134
,
184102
(
2011
).
37.
A.
Castro
,
H.
Appel
,
M.
Oliveira
,
C. A.
Rozzi
,
X.
Andrade
,
F.
Lorenzen
,
M. A. L.
Marques
,
E. K. U.
Gross
, and
A.
Rubio
, “
Octopus: A tool for the application of time-dependent density functional theory
,”
Phys. Status Solidi B
243
,
2465
2488
(
2006
).
38.
M. R.
Provorse
and
C. M.
Isborn
, “
Electron dynamics with real-time time-dependent density functional theory
,”
Int. J. Quantum Chem.
116
,
739
749
(
2016
).
39.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
 et al., “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
40.
K.
Lopata
and
N.
Govind
, “
Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores
,”
J. Chem. Theory Comput.
7
,
1344
(
2011
).
41.
P.
Krause
,
J. A.
Sonk
, and
H. B.
Schlegel
, “
Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential
,”
J. Chem. Phys.
140
,
174113
(
2014
).
42.
P.
Krause
and
H. B.
Schlegel
, “
Angle-dependent ionization of small molecules by time-dependent configuration interaction and an absorbing potential
,”
J. Phys. Chem. Lett.
6
,
2140
2146
(
2015
).
43.
A.
Sissay
,
P.
Abanador
,
F.
Mauger
,
M. B.
Gaarde
,
K. J.
Schafer
, and
K.
Lopata
, “
Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory
,”
J. Chem. Phys.
145
,
094105
(
2016
).
44.
P.
Hoerner
and
H. B.
Schlegel
, “
Angular dependence of strong field ionization of haloacetylenes HCCX (X = F, Cl, Br, I), using time-dependent configuration interaction with an absorbing potential
,”
J. Phys. Chem. C
122
,
13751
13757
(
2018
).
45.
R.
Baer
and
D.
Neuhauser
, “
Density functional theory with correct long-range asymptotic behavior
,”
Phys. Rev. Lett.
94
,
043002
(
2005
).
46.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
47.
A.
Karolewski
,
L.
Kronik
, and
S.
Kümmel
, “
Using optimally tuned range separated hybrid functionals in ground-state calculations: Consequences and caveats
,”
J. Chem. Phys.
138
,
204115
(
2013
).
48.
S.
Lias
, “
Ionization energy evaluation
,” in
NIST Chemistry WebBook
, NIST Standard Reference Database Number 69, edited by
P.
Linstrom
and
W.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
).
49.

Unlike in Ref. 20, we find that adaptive partitioning using the Bader method is unstable. We attribute this to the more complex, three-dimensional geometry of the molecule. Instead, we use a fixed boundary between the methyl and halogen groups, defined as a plane perpendicular to the CX bond. We have checked the robustness of our results with the position of that dividing the plane. The results shown in Fig. 4 use a plane located at a local minimum in the transverse density in the HOS.

You do not currently have access to this content.