The nuclear electric quadrupole moment (NQM) of ruthenium was reevaluated by means of the molecular method. Therefore, four-component relativistic electronic structure calculations of the electric field gradient at the Ru nucleus in ruthenium monocarbide, which were done with the coupled cluster methodology and carefully augmented large basis sets, were combined with the respective nuclear quadrupole coupling constant from experiments. This provided a recommended NQM value of (425 ± 13) mbarn for 101Ru.

1.
IUPAC
,
Compendium of Chemical Terminology
, 2nd ed., edited by
A. D.
McNaught
and
A.
Wilkinson
(
Blackwell Scientific Publications
,
Oxford
,
1997
) (the “Gold Book”), XML online corrected version available at http://goldbook.iupac.org, 2019, created by M. Nic, J. Jirat, and B. Kosata; updates compiled by A. Jenkins.
2.
4.
S.
Büttgenbach
,
Hyperfine Structure in 4d- and 5d-Shell Atoms
(
Springer-Verlag
,
Berlin
,
1982
).
5.
F.
Wang
,
T. C.
Steimle
,
A. G.
Adam
,
L.
Cheng
, and
J. F.
Stanton
,
J. Chem. Phys.
139
,
174318
(
2013
).
6.
R. L. A.
Haiduke
,
A. B. F.
da Silva
, and
L.
Visscher
,
J. Chem. Phys.
125
,
064301
(
2006
).
7.
T. Q.
Teodoro
,
A. B. F.
da Silva
, and
R. L. A.
Haiduke
,
J. Chem. Theory Comput.
10
,
4761
(
2014
).
8.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16, 2016, written by
H. J. A.
Jensen
,
R.
Bast
,
T.
Saue
, and
L.
Visscher
, with contributions from,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
Di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, see http://www.diracprogram.org.
9.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
10.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
11.
D.
Feller
,
J. Comput. Chem.
17
,
1571
(
1996
).
12.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
13.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
15.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
16.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
17.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
18.
R. T.
Santiago
and
R. L. A.
Haiduke
,
J. Comput. Chem.
36
,
2125
(
2015
).
19.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
20.
W.
Jiang
,
N. J.
Deyonker
, and
A. K.
Wilson
,
J. Chem. Theory Comput.
8
,
460
(
2012
).
21.
R. T.
Santiago
and
R. L. A.
Haiduke
,
Phys. Rev. A
91
,
042516
(
2015
).
22.
G. A.
Canella
,
R. T.
Santiago
, and
R. L. A.
Haiduke
,
Chem. Phys. Lett.
660
,
228
(
2016
).
23.
J. R.
de Laeter
,
J. K.
Böhlke
,
P.
de Bièvre
,
H.
Hidaka
,
H. S.
Peiser
,
K. J. R.
Rosman
, and
P. D. P.
Taylor
,
Pure Appl. Chem.
75
,
683
(
2003
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
25.
J. P.
Perdew
, in
Electronic Structure of Solids ‘91
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie Verlag
,
Berlin
,
2003
), pp.
11
20
.
26.
J. N. P.
van Stralen
and
L.
Visscher
,
Mol. Phys.
101
,
2115
(
2003
).
27.
B. O.
Roos
,
R.
Lindh
,
P. Å.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Phys. Chem. A
109
,
6575
(
2005
).
28.
B. O.
Roos
,
R.
Lindh
,
P. Å.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2004
).

Supplementary Material

You do not currently have access to this content.