The study of matter at extreme densities and temperatures as they occur in astrophysical objects and state-of-the-art experiments with high-intensity lasers is of high current interest for many applications. While no overarching theory for this regime exists, accurate data for the density response of correlated electrons to an external perturbation are of paramount importance. In this context, the key quantity is given by the local field correction (LFC), which provides a wave-vector resolved description of exchange-correlation effects. In this work, we present extensive new path integral Monte Carlo (PIMC) results for the static LFC of the uniform electron gas, which are subsequently used to train a fully connected deep neural network. This allows us to present a representation of the LFC with respect to continuous wave-vectors, densities, and temperatures covering the entire warm dense matter regime. Both the PIMC data and neural-net results are available online. Moreover, we expect the presented combination of ab initio calculations with machine-learning methods to be a promising strategy for many applications.

1.
P.-F.
Loos
and
P. M. W.
Gill
, “
The uniform electron gas
,”
Comput. Mol. Sci.
6
,
410
429
(
2016
).
2.
G.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2008
).
3.
G. D.
Mahan
,
Many-Particle Physics
(
Springer Science+Business Media
,
New York
,
2000
).
4.
E.
Wigner
, “
On the interaction of electrons in metals
,”
Phys. Rev.
46
,
1002
(
1934
).
5.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
6.
N. D.
Drummond
,
Z.
Radnai
,
J. R.
Trail
,
M. D.
Towler
, and
R. J.
Needs
, “
Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
,”
Phys. Rev. B
69
,
085116
(
2004
).
7.
K.
Utsumi
and
S.
Ichimaru
, “
Dielectric formulation of strongly coupled electron liquids at metallic densities. IV. Static properties in the low-density domain and the Wigner crystallization
,”
Phys. Rev. B
24
,
3220
(
1981
).
8.
J. R.
Trail
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. B
68
,
045107
(
2003
).
9.
D.
Pines
and
P.
Nozieres
,
Theory of Quantum Liquids
(
CRC Press
,
Boca Raton, Florida, USA
,
2018
).
10.
D.
Pines
and
D.
Bohm
, “
A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions
,”
Phys. Rev.
85
,
338
(
1952
).
11.
D.
Bohm
and
D.
Pines
, “
A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas
,”
Phys. Rev.
92
,
609
(
1953
).
12.
H.
Iyetomi
,
K.
Utsumi
, and
S.
Ichimaru
, “
Dielectric formulation of strongly coupled electron liquids at metallic densities. V. Possibility of a charge-density-wave instability
,”
Phys. Rev. B
24
,
3226
(
1981
).
13.
A.
Holas
and
S.
Rahman
, “
Dynamic local-field factor of an electron liquid in the quantum versions of the Singwi-Tosi-Land-Sjölander and Vashishta-Singwi theories
,”
Phys. Rev. B
35
,
2720
(
1987
).
14.
H. K.
Schweng
and
H. M.
Böhm
, “
Finite-temperature electron correlations in the framework of a dynamic local-field correction
,”
Phys. Rev. B
48
,
2037
(
1993
).
15.
A. W.
Overhauser
, “
Spin density waves in an electron gas
,”
Phys. Rev.
128
,
1437
(
1962
).
16.
Y.
Takada
and
H.
Yasuhara
, “
Dynamical structure factor of the homogeneous electron liquid: Its accurate shape and the interpretation of experiments on aluminum
,”
Phys. Rev. Lett.
89
,
216402
(
2002
).
17.
Y.
Takada
, “
Emergence of an excitonic collective mode in the dilute electron gas
,”
Phys. Rev. B
94
,
245106
(
2016
).
18.
T.
Dornheim
,
S.
Groth
,
J.
Vorberger
, and
M.
Bonitz
, “
Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter
,”
Phys. Rev. Lett.
121
,
255001
(
2018
).
19.
M.
Higuchi
and
H.
Yasuhara
, “
Kleinman’s dielectric function and interband optical absorption strength of simple metals
,”
J. Phys. Soc. Jpn.
69
,
2099
2106
(
2000
).
20.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
(
1980
).
21.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
22.
J. P.
Perdew
and
Y.
Wang
, “
Pair-distribution function and its coupling-constant average for the spin-polarized electron gas
,”
Phys. Rev. B
46
,
12947
(
1992
).
23.
P.
Gori-Giorgi
,
F.
Sacchetti
, and
G. B.
Bachelet
, “
Analytic static structure factors and pair-correlation functions for the unpolarized homogeneous electron gas
,”
Phys. Rev. B
61
,
7353
(
2000
).
24.
P.
Gori-Giorgi
and
J. P.
Perdew
, “
Pair distribution function of the spin-polarized electron gas: A first-principles analytic model for all uniform densities
,”
Phys. Rev. B
66
,
165118
(
2002
).
25.
T.
Chachiyo
, “
Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities
,”
J. Chem. Phys.
145
,
021101
(
2016
).
26.
D. M.
Ceperley
, “
Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions
,”
Phys. Rev. B
18
,
3126
3138
(
1978
).
27.
S.
Moroni
,
D. M.
Ceperley
, and
G.
Senatore
, “
Static response and local field factor of the electron gas
,”
Phys. Rev. Lett.
75
,
689
(
1995
).
28.
G. G.
Spink
,
R. J.
Needs
, and
N. D.
Drummond
, “
Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas
,”
Phys. Rev. B
88
,
085121
(
2013
).
29.
G.
Ortiz
and
P.
Ballone
, “
Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas
,”
Phys. Rev. B
50
,
1391
(
1994
).
30.
G.
Ortiz
,
M.
Harris
, and
P.
Ballone
, “
Zero temperature phases of the electron gas
,”
Phys. Rev. Lett.
82
,
5317
(
1999
).
31.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
(
2015
).
32.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
33.

We assume Hartree atomic units throughout this work.

34.
A. A.
Kugler
, “
Theory of the local field correction in an electron gas
,”
J. Stat. Phys.
12
,
35
(
1975
).
35.

We note that while the RPA provides a description of the density response of the system on a mean field level, it gives a nonvanishing correlation energy when inserted into the fluctuation dissipation theorem and the adiabatic connection formula (see, e.g., Ref. 98) and approaches the exact limit for rs = 0.

36.
J.
Hubbard
, “
The description of collective motions in terms of many-body perturbation theory
,”
Proc. R. Soc. London, Ser. A
240
,
539
(
1957
).
37.
D.
Kraus
,
B.
Bachmann
,
B.
Barbrel
,
R. W.
Falcone
,
L. B.
Fletcher
,
S.
Frydrych
,
E. J.
Gamboa
,
M.
Gauthier
,
D. O.
Gericke
,
S. H.
Glenzer
,
S.
Göde
,
E.
Granados
,
N. J.
Hartley
,
J.
Helfrich
,
H. J.
Lee
,
B.
Nagler
,
A.
Ravasio
,
W.
Schumaker
,
J.
Vorberger
, and
T.
Döppner
, “
Characterizing the ionization depression potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering
,”
Plasma Phys. Controlled Fusion
61
,
014015
(
2018
).
38.
K.-U.
Plagemann
,
P.
Sperling
,
R.
Thiele
,
M. P.
Desjarlais
,
C.
Fortmann
,
T.
Döppner
,
H. J.
Lee
,
S. H.
Glenzer
, and
R.
Redmer
, “
Dynamic structure factor in warm dense beryllium
,”
New J. Phys.
14
,
055020
(
2012
).
39.
P.
Neumayer
,
C.
Fortmann
,
T.
Döppner
,
P.
Davis
,
R. W.
Falcone
,
A. L.
Kritcher
,
O. L.
Landen
,
H. J.
Lee
,
R. W.
Lee
,
C.
Niemann
,
S.
Le Pape
, and
S. H.
Glenzer
, “
Plasmons in strongly coupled shock-compressed matter
,”
Phys. Rev. Lett.
105
,
075003
(
2010
).
40.
C.
Fortmann
,
A.
Wierling
, and
G.
Röpke
, “
Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas
,”
Phys. Rev. E
81
,
026405
(
2010
).
41.
G.
Senatore
,
S.
Moroni
, and
D. M.
Ceperley
, “
Local field factor and effective potentials in liquid metals
,”
J. Non-Cryst. Solids
205-207
,
851
854
(
1996
).
42.
Zh. A.
Moldabekov
,
S.
Groth
,
T.
Dornheim
,
H.
Kählert
,
M.
Bonitz
, and
T. S.
Ramazanov
, “
Structural characteristics of strongly coupled ions in a dense quantum plasma
,”
Phys. Rev. E
98
,
023207
(
2018
).
43.
Zh. A.
Moldabekov
,
H.
Kählert
,
T.
Dornheim
,
S.
Groth
,
M.
Bonitz
, and
T. S.
Ramazanov
, “
Dynamical structure factor of strongly coupled ions in a dense quantum plasma
,”
Phys. Rev. E
99
,
053203
(
2019
).
44.
A.
Pribram-Jones
,
P. E.
Grabowski
, and
K.
Burke
, “
Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem
,”
Phys. Rev. Lett.
116
,
233001
(
2016
).
45.
D.
Lu
, “
Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems
,”
J. Chem. Phys.
140
,
18A520
(
2014
).
46.
C. E.
Patrick
and
K. S.
Thygesen
, “
Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels
,”
J. Chem. Phys.
143
,
102802
(
2015
).
47.
A.
Görling
, “
Hierarchies of methods towards the exact Kohn-Sham correlation energy based on the adiabatic-connection fluctuation-dissipation theorem
,”
Phys. Rev. B
99
,
235120
(
2019
).
48.
A.
Diaw
and
M. S.
Murillo
, “
Generalized hydrodynamics model for strongly coupled plasmas
,”
Phys. Rev. E
92
,
013107
(
2015
).
49.
A.
Diaw
and
M. S.
Murillo
, “
A viscous quantum hydrodynamics model based on dynamic density functional theory
,”
Sci. Rep.
7
,
15352
(
2017
).
50.
Zh. A.
Moldabekov
,
M.
Bonitz
, and
T. S.
Ramazanov
, “
Theoretical foundations of quantum hydrodynamics for plasmas
,”
Phys. Plasmas
25
,
031903
(
2018
).
51.
M. P.
Desjarlais
,
C. R.
Scullard
,
L. X.
Benedict
,
H. D.
Whitley
, and
R.
Redmer
, “
Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering
,”
Phys. Rev. E
95
,
033203
(
2017
).
52.
M.
Veysman
,
G.
Röpke
,
M.
Winkel
, and
H.
Reinholz
, “
Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches
,”
Phys. Rev. E
94
,
013203
(
2016
).
53.
W.
Cayzac
,
A.
Frank
,
A.
Ortner
,
V.
Bagnoud
,
M. M.
Basko
,
S.
Bedacht
,
C.
Bläser
,
A.
Blazevic
,
S.
Busold
,
O.
Deppert
,
J.
Ding
,
M.
Ehret
,
P.
Fiala
,
S.
Frydrych
,
D. O.
Gericke
,
L.
Hallo
,
J.
Helfrich
,
D.
Jahn
,
E.
Kjartansson
,
A.
Knetsch
,
D.
Kraus
,
G.
Malka
,
N. W.
Neumann
,
K.
Pépitone
,
D.
Pepler
,
S.
Sander
,
G.
Schaumann
,
T.
Schlegel
,
N.
Schroeter
,
D.
Schumacher
,
M.
Seibert
,
A.
Tauschwitz
,
J.
Vorberger
,
F.
Wagner
,
S.
Weih
,
Y.
Zobus
, and
M.
Roth
, “
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
,”
Nat. Commun.
8
,
15693
(
2017
).
54.
Z.-G.
Fu
,
Z.
Wang
, and
P.
Zhang
, “
Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections
,”
Phys. Plasmas
24
,
112710
(
2017
).
55.
J.
Vorberger
,
D. O.
Gericke
,
Th.
Bornath
, and
M.
Schlanges
, “
Energy relaxation in dense, strongly coupled two-temperature plasmas
,”
Phys. Rev. E
81
,
046404
(
2010
).
56.
S.
Moroni
,
D. M.
Ceperley
, and
G.
Senatore
, “
Static response from quantum Monte Carlo calculations
,”
Phys. Rev. Lett.
69
,
1837
(
1992
).
57.
C.
Bowen
,
G.
Sugiyama
, and
B. J.
Alder
, “
Static dielectric response of the electron gas
,”
Phys. Rev. B
50
,
14838
(
1994
).
58.
M.
Corradini
,
R.
Del Sole
,
G.
Onida
, and
M.
Palummo
, “
Analytical expressions for the local-field factor G(q) and the exchange-correlation kernel Kxc(r) of the homogeneous electron gas
,”
Phys. Rev. B
57
,
14569
(
1998
).
59.
J.
Vorberger
,
I.
Tamblyn
,
B.
Militzer
, and
S. A.
Bonev
, “
Hydrogen-helium mixtures in the interiors of giant planets
,”
Phys. Rev. B
75
,
024206
(
2007
).
60.
M. D.
Knudson
,
M. P.
Desjarlais
,
R. W.
Lemke
,
T. R.
Mattsson
,
M.
French
,
N.
Nettelmann
, and
R.
Redmer
, “
Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/cm3
,”
Phys. Rev. Lett.
108
,
091102
(
2012
).
61.
F.
Soubiran
,
B.
Militzer
,
K. P.
Driver
, and
S.
Zhang
, “
Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors
,”
Phys. Plasmas
24
,
041401
(
2017
).
62.
M.
Schöttler
and
R.
Redmer
, “
Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures
,”
Phys. Rev. Lett.
120
,
115703
(
2018
).
63.
D.
Saumon
,
W. B.
Hubbard
,
G.
Chabrier
, and
H. M.
van Horn
, “
The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs
,”
Astrophys. J.
391
,
827
831
(
1992
).
64.
W. B.
Hubbard
,
T.
Guillot
,
J. I.
Lunine
,
A.
Burrows
,
D.
Saumon
,
M. S.
Marley
, and
R. S.
Freedman
, “
Liquid metallic hydrogen and the structure of brown dwarfs and giant planets
,”
Phys. Plasmas
4
,
2011
2015
(
1997
).
65.
A.
Becker
,
W.
Lorenzen
,
J. J.
Fortney
,
N.
Nettelmann
,
M.
Schöttler
, and
R.
Redmer
, “
Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs
,”
Astrophys. J. Suppl. Ser.
215
,
21
(
2014
).
66.
M.
Koenig
 et al, “
Progress in the study of warm dense matter
,”
Plasma Phys. Controlled Fusion
47
,
B441
B449
(
2005
).
67.
V. E.
Fortov
, “
Extreme states of matter on Earth and in space
,”
Phys.-Usp.
52
,
615
647
(
2009
).
68.
K.
Falk
, “
Experimental methods for warm dense matter research
,”
High Power Laser Sci. Eng.
6
,
e59
(
2018
).
69.
R.
Ernstorfer
,
M.
Harb
,
C. T.
Hebeisen
,
G.
Sciaini
,
T.
Dartigalongue
, and
R. J. D.
Miller
, “
The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold
,”
Science
323
,
1033
(
2009
).
70.
L.
Waldecker
,
R.
Bertoni
,
R.
Ernstorfer
, and
J.
Vorberger
, “
Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation
,”
Phys. Rev. X
6
,
021003
(
2016
).
71.
A.
Jayaraman
, “
Diamond anvil cell and high-pressure physical investigations
,”
Rev. Mod. Phys.
55
,
65
(
1983
).
72.
S.
Mukherjee
,
F.
Libisch
,
N.
Large
,
O.
Neumann
,
L. V.
Brown
,
J.
Cheng
,
J.
Britt Lassiter
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au
,”
Nano Lett.
13
,
240
247
(
2013
).
73.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
, “
Plasmon-induced hot carrier science and technology
,”
Nat. Nanotechnol.
10
,
25
(
2015
).
74.
S. X.
Hu
,
B.
Militzer
,
V. N.
Goncharov
, and
S.
Skupsky
,
Phys. Rev. B
84
,
224109
(
2011
).
75.
A. L.
Kritcher
,
T.
Döppner
,
C.
Fortmann
,
T.
Ma
,
O. L.
Landen
,
R.
Wallace
, and
S. H.
Glenzer
, “
In-flight measurements of capsule shell adiabats in laser-driven implosions
,”
Phys. Rev. Lett.
107
,
015002
(
2011
).
76.
E.
Zarkadoula
,
S. L.
Daraszewicz
,
D. M.
Duffy
,
M. A.
Seaton
,
I. T.
Todorov
,
K.
Nordlund
,
M. T.
Dove
, and
K.
Trachenko
, “
Electronic effects in high-energy radiation damage in iron
,”
J. Phys.: Condens. Matter
26
,
085401
(
2014
).
77.
Frontiers and Challenges in Warm Dense Matter
, edited by
F.
Graziani
,
M. P.
Desjarlais
,
R.
Redmer
, and
S. B.
Trickey
(
Springer International Publishing
,
2014
).
78.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
(
1965
).
79.
U.
Gupta
and
A. K.
Rajagopal
, “
Density functional formalism at finite temperatures with some applications
,”
Phys. Rep.
87
,
259
311
(
1982
).
80.
E. W.
Brown
,
B. K.
Clark
,
J. L.
DuBois
, and
D. M.
Ceperley
, “
Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas
,”
Phys. Rev. Lett.
110
,
146405
(
2013
).
81.
T.
Schoof
,
S.
Groth
,
J.
Vorberger
, and
M.
Bonitz
, “
Ab initio thermodynamic results for the degenerate electron gas at finite temperature
,”
Phys. Rev. Lett.
115
,
130402
(
2015
).
82.
B.
Militzer
and
K. P.
Driver
, “
Development of path integral Monte Carlo simulations with localized nodal surfaces for second-row elements
,”
Phys. Rev. Lett.
115
,
176403
(
2015
).
83.
T.
Dornheim
,
S.
Groth
,
A.
Filinov
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions
,”
New J. Phys.
17
,
073017
(
2015
).
84.
F. D.
Malone
,
N. S.
Blunt
,
J. J.
Shepherd
,
D. K. K.
Lee
,
J. S.
Spencer
, and
W. M. C.
Foulkes
, “
Interaction picture density matrix quantum Monte Carlo
,”
J. Chem. Phys.
143
,
044116
(
2015
).
85.
T.
Dornheim
,
T.
Schoof
,
S.
Groth
,
A.
Filinov
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature
,”
J. Chem. Phys.
143
,
204101
(
2015
).
86.
S.
Groth
,
T.
Schoof
,
T.
Dornheim
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
,”
Phys. Rev. B
93
,
085102
(
2016
).
87.
T.
Dornheim
,
S.
Groth
,
T.
Schoof
,
C.
Hann
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulations of the Uniform electron gas without fixed nodes: The unpolarized case
,”
Phys. Rev. B
93
,
205134
(
2016
).
88.
T.
Dornheim
,
S.
Groth
,
T.
Sjostrom
,
F. D.
Malone
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit
,”
Phys. Rev. Lett.
117
,
156403
(
2016
).
89.
F. D.
Malone
,
N. S.
Blunt
,
E. W.
Brown
,
D. K. K.
Lee
,
J. S.
Spencer
,
W. M. C.
Foulkes
, and
J. J.
Shepherd
, “
Accurate exchange-correlation energies for the warm dense electron gas
,”
Phys. Rev. Lett.
117
,
115701
(
2016
).
90.
J. L.
DuBois
,
E. W.
Brown
, and
B. J.
Alder
, “
Overcoming the fermion sign problem in homogeneous systems
,” in
Advances in the Computational Sciences-Symposium in Honor of Dr Berni Alder’s 90th Birthday
, edited by
E.
Schwegler
,
B. M.
Rubenstein
, and
S. B.
Libby
(
World Scientific
,
Singapore
,
2017
).
91.
T.
Dornheim
,
S.
Groth
,
J.
Vorberger
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo approach to the static density response of the warm dense electron gas
,”
Phys. Rev. E
96
,
023203
(
2017
).
92.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
Ab initio results for the static structure factor of the warm dense electron gas
,”
Contrib. Plasma Phys.
57
,
468
478
(
2017
).
93.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo simulations of degenerate electrons at finite temperature
,”
Contrib. Plasma Phys.
59
,
e201800157
(
2019
).
94.
T.
Dornheim
,
S.
Groth
,
F. D.
Malone
,
T.
Schoof
,
T.
Sjostrom
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulation of the warm dense electron gas
,”
Phys. Plasmas
24
,
056303
(
2017
).
95.
S.
Groth
,
T.
Dornheim
,
T.
Sjostrom
,
F. D.
Malone
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio exchange–correlation free energy of the uniform electron gas at warm dense matter conditions
,”
Phys. Rev. Lett.
119
,
135001
(
2017
).
96.
V. V.
Karasiev
,
T.
Sjostrom
,
J. W.
Dufty
, and
S. B.
Trickey
, “
Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations
,”
Phys. Rev. Lett.
112
,
076403
(
2014
).
97.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
The uniform electron gas at warm dense matter conditions
,”
Phys. Rep.
744
,
1
86
(
2018
).
98.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
, “
Density functional theory is straying from the path toward the exact functional
,”
Science
355
,
49
52
(
2017
).
99.
A.
Pribram-Jones
,
D. A.
Gross
, and
K.
Burke
, “
DFT: A theory full of holes?
,”
Annu. Rev. Phys. Chem.
66
,
283
304
(
2015
).
100.
S.
Tanaka
and
S.
Ichimaru
, “
Thermodynamics and correlational properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation
,”
J. Phys. Soc. Jpn.
55
,
2278
2289
(
1986
).
101.
T.
Sjostrom
and
J.
Dufty
, “
Uniform electron gas at finite temperatures
,”
Phys. Rev. B
88
,
115123
(
2013
).
102.
S.
Tanaka
, “
Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation
,”
J. Chem. Phys.
145
,
214104
(
2016
).
103.
S.
Groth
,
T.
Dornheim
, and
J.
Vorberger
, “
Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas
,”
Phys. Rev. B
99
,
235122
(
2019
).
104.
T.
Dornheim
, “
The fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter
,”
Phys. Rev. E
100
,
023307
(
2019
).
105.
M.
Troyer
and
U. J.
Wiese
, “
Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations
,”
Phys. Rev. Lett.
94
,
170201
(
2005
).
106.
S.
Groth
,
T.
Dornheim
, and
M.
Bonitz
, “
Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas
,”
J. Chem. Phys.
147
,
164108
(
2017
).
107.
F.
Chollet
 et al, Keras, https://keras.io,
2015
.
108.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software available from https://www.tensorflow.org (
2015
).
109.

This is a link to both the ML representation of the static LFC and the PIMC raw data. https://github.com/ToDor90/LFC

110.
P.
Arora
,
K.
Kumar
, and
R. K.
Moudgil
, “
Spin-resolved correlations in the warm-dense homogeneous electron gas
,”
Eur. Phys. J. B
90
,
76
(
2017
).
111.
M.
Panholzer
,
R.
Hobbiger
, and
H.
Böhm
, “
Optimized correlations inspired by perturbation theory
,”
Phys. Rev. B
99
,
195156
(
2019
).
112.
F.
Mezzacapo
and
M.
Boninsegni
, “
Superfluidity and quantum melting of p–H2 clusters
,”
Phys. Rev. Lett.
97
,
045301
(
2006
).
113.
F.
Mezzacapo
and
M.
Boninsegni
, “
Structure, superfluidity, and quantum melting of hydrogen clusters
,”
Phys. Rev. A
75
,
033201
(
2007
).
114.
M.
Boninsegni
,
N. V.
Prokofev
, and
B. V.
Svistunov
, “
Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations
,”
Phys. Rev. E
74
,
036701
(
2006
).
115.
M.
Boninsegni
,
N. V.
Prokofev
, and
B. V.
Svistunov
, “
Worm algorithm for continuous-space path integral Monte Carlo simulations
,”
Phys. Rev. Lett.
96
,
070601
(
2006
).
116.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
117.
D. M.
Ceperley
, “
Fermion nodes
,”
J. Stat. Phys.
63
,
1237
1267
(
1991
).
118.
G.
Sugiyama
,
C.
Bowen
, and
B. J.
Alder
, “
Static dielectric response of charged bosons
,”
Phys. Rev. B
46
,
13042
(
1992
).
119.
A.
Filinov
,
N. V.
Prokof’ev
, and
M.
Bonitz
, “
Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems
,”
Phys. Rev. Lett.
105
,
070401
(
2010
).
120.
A. A.
Kugler
, “
Bounds for some equilibrium properties of an electron gas
,”
Phys. Rev. A
1
,
1688
(
1970
).
121.
A.
Holas
, “
Exact asymptotic expression for the static dielectric function of a uniform electron liquid at large wave vector
,” in
Strongly Coupled Plasma Physics
, edited by
F. J.
Rogers
and
H. E.
DeWitt
(
Plenum
,
NewYork
,
1987
), p.
46
.
122.

This is, among other things, due to the softening of the Fermi surface at finite temperature and will be discussed in a separate publication.

123.

For completeness, we note that the inclusion of the exact large-q limit at finite temperature, which is not expected to improve the quality of our representation, is the specified range of validity (0 < q < 5qF), but would potentially allow to extend it to q → ∞.

124.
B.
Farid
,
V.
Heine
,
G. E.
Engel
, and
I. J.
Robertson
, “
Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas
,”
Phys. Rev. B
48
,
11602
(
1993
).
125.
B.
Militzer
and
E. L.
Pollock
, “
Lowering of the kinetic energy in interacting quantum systems
,”
Phys. Rev. Lett.
89
,
280401
(
2002
).
126.
W. D.
Kraeft
,
M.
Schlanges
,
J.
Vorberger
, and
H. E.
DeWitt
, “
Kinetic and correlation energies and distribution functions of dense plasmas
,”
Phys. Rev. E
66
,
046405
(
2002
).
127.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
,
359
366
(
1989
).
128.
D.
Rolnick
and
M.
Tegmark
, “
The power of deeper networks for expressing natural functions
,” e-print arXiv:1705.05502
(2018
), International Conference on Learning Representations (ICLR).
129.
S. H.
Glenzer
and
R.
Redmer
, “
X-ray Thomson scattering in high energy density plasmas
,”
Rev. Mod. Phys.
81
,
1625
(
2009
).
130.
A. D.
Baczewski
,
L.
Shulenburger
,
M. P.
Desjarlais
,
S. B.
Hansen
, and
R. J.
Magyar
, “
X-ray Thomson scattering in warm dense matter without the Chihara decomposition
,”
Phys. Rev. Lett.
116
,
115004
(
2016
).
131.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” e-print arXiv:1412.6980v8 (
2015
), International Conference on Learning Representations (ICLR).
You do not currently have access to this content.