To model the exchange-correlation hole ρXC(r, u) of Kohn-Sham theory, we employ the correlation factor ansatz, which has recently been developed in our group. In this ansatz, ρXC(r, u) is written as a product of the correlation factor fC(r, u) and an exchange-hole model ρX(r, u), i.e., ρXC(r, u) = fC(r, u)ρX(r, u). In particular, we address the one-electron, self-interaction error and introduce a modified correlation factor model where fC(r, u) is constructed such that it reduces identically to one in localized one-electron regions of a many-electron system. This self-interaction corrected exchange-correlation hole is then used to generate the corresponding exchange-correlation energy functional. The new functional is implemented into a Kohn-Sham program and assessed by calculating various molecular properties. We find that, overall, a significant improvement is obtained compared to previous versions of the correlation factor model.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
R.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
3.
R.
Dreizler
and
E.
Gross
,
Density-Functional Theory
(
Springer
,
Berlin
,
1990
).
4.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
5.
J.
Přecechtělová
,
H.
Bahmann
,
M.
Kaupp
, and
M.
Ernzerhof
,
J. Chem. Phys.
141
,
111102
(
2014
).
6.
J. P.
Přecechtělová
,
H.
Bahmann
,
M.
Kaupp
, and
M.
Ernzerhof
,
J. Chem. Phys.
143
,
144102
(
2015
).
7.
R.
Wang
,
Y.
Zhou
, and
M.
Ernzerhof
,
J. Chem. Phys.
150
,
084107
(
2019
).
8.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
9.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
10.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
11.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
12.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
13.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
14.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
15.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
,
Mol. Phys.
100
,
1771
(
2002
).
16.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
J. Chem. Phys.
120
,
524
(
2004
).
17.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
18.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
19.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
20.
T.
Schmidt
,
E.
Kraisler
,
A.
Makmal
,
L.
Kronik
, and
S.
Kümmel
,
J. Chem. Phys.
140
,
18A510
(
2014
).
21.
A. D.
Becke
and
M. R.
Roussel
,
Phys. Rev. A
39
,
3761
(
1989
).
22.
H.
Bahmann
and
M.
Ernzerhof
,
J. Chem. Phys.
128
,
234104
(
2008
).
23.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
46
,
12947
(
1992
).
24.
K.
Burke
,
J. P.
Perdew
, and
M.
Ernzerhof
,
J. Chem. Phys.
109
,
3760
(
1998
).
25.
A. D.
Becke
,
J. Chem. Phys.
119
,
2972
(
2003
).
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
J. A.
Montgomery
, Jr.
,
T.
Vreven
,
K. N.
Kudin
,
J. C.
Burant
,
J. M.
Millam
,
S. S.
Iyengar
,
J.
Tomasi
,
V.
Barone
,
B.
Mennucci
,
M.
Cossi
,
G.
Scalmani
,
N.
Rega
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
M.
Klene
,
X.
Li
,
J. E.
Knox
,
H. P.
Hratchian
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
P. Y.
Ayala
,
K.
Morokuma
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
V. G.
Zakrzewski
,
S.
Dapprich
,
A. D.
Daniels
,
M. C.
Strain
,
O.
Farkas
,
D. K.
Malick
,
A. D.
Rabuck
,
K.
Raghavachari
,
J. B.
Foresman
,
J. V.
Ortiz
,
Q.
Cui
,
A. G.
Baboul
,
S.
Clifford
,
J.
Cioslowski
,
B. B.
Stefanov
,
G.
Liu
,
A.
Liashenko
,
P.
Piskorz
,
I.
Komaromi
,
R. L.
Martin
,
D. J.
Fox
,
T.
Keith
,
M. A.
Al-Laham
,
C. Y.
Peng
,
A.
Nanayakkara
,
M.
Challacombe
,
P. M. W.
Gill
,
B.
Johnson
,
W.
Chen
,
M. W.
Wong
,
C.
Gonzalez
, and
J. A.
Pople
, gaussian 03, Revision G.08,
Gaussian, Inc.
,
Wallingford, CT
,
2004
.
27.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
28.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
29.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
30.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
31.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
32.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
808
(
2009
).
33.
R.
Peverati
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
14
,
13171
(
2012
).
34.
R.
Peverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc., A
372
,
20120476
(
2014
).
35.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
, “
Density functionals: Where do they come from, why do they work?
,” in
Density Functional Theory
, edited by
R. F.
Nalewajski
(
Springer-Verlag
,
Berlin
,
1996
).
36.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
37.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
38.
S. G.
Dale
,
E. R.
Johnson
, and
A. D.
Becke
,
J. Chem. Phys.
147
,
154103
(
2017
).
39.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
146
,
211105
(
2017
).
40.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
41.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
).
You do not currently have access to this content.