Force spectroscopy techniques are often used to learn about the free energy landscape of single biomolecules, typically by recovering free energy quantities that, extrapolated to zero force, are compared to those measured in bulk experiments. However, it is not always clear how the information obtained from a mechanically perturbed system can be related to the information obtained using other denaturants since tensioned molecules unfold and refold along a reaction coordinate imposed by the force, which is not likely to be meaningful in its absence. Here, we explore this dichotomy by investigating the unfolding landscape of a model protein, which is unfolded first mechanically through typical force spectroscopy-like protocols and next thermally. When unfolded by nonequilibrium force extension and constant force protocols, we recover a simple two-barrier landscape as the protein reaches the extended conformation through a metastable intermediate. Interestingly, folding-unfolding equilibrium simulations at low forces suggested a totally different scenario, where this metastable state plays little role in the unfolding mechanism, and the protein unfolds through two competing pathways [R. Tapia-Rojo et al., J. Chem. Phys. 141, 135102 (2014)]. Finally, we use Markov state models to describe the configurational space of the unperturbed protein close to the critical temperature. The thermal dynamics is well understood by a one-dimensional landscape along an appropriate reaction coordinate, however it is very different from the mechanical picture. In this sense, the results of our protein model for the mechanical and thermal descriptions provide incompatible views of the folding/unfolding landscape of the system, and the estimated quantities to zero force result are hard to interpret.

1.
K. C.
Neuman
and
A.
Nagy
, “
Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy
,”
Nat. Methods
5
,
491
505
(
2008
).
2.
C.
Bustamante
,
Y. R.
Chemla
,
N. R.
Force
, and
D.
Izhaky
, “
Mechanical processes in biochemistry
,”
Annu. Rev. Biochem.
73
,
705
748
(
2004
).
3.
M.
Carrión-Vázquez
,
A. F.
Oberhauser
,
S. B.
Fowler
,
P. E.
Marszalek
,
S. E.
Broedel
,
J.
Clarke
, and
J. M.
Fernández
, “
Mechanical and chemical unfolding of a single protein: A comparison
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
3694
(
1999
).
4.
H.
Li
,
A. F.
Oberhauser
,
S. B.
Fowler
,
J.
Clarke
, and
J. M.
Fernández
, “
Atomic force microscopy reveals the mechanical design of a modular protein
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
6527
(
2000
).
5.
P.
Kosuri
,
J.
Alegre-Cebollada
,
J.
Feng
,
A.
Kaplan
,
A.
Ingles-Prieto
,
C. L.
Badilla
,
B. R.
Stockwell
,
J. M.
Sanchez-Ruiz
,
A.
Holmgren
, and
J. M.
Fernandez
, “
Protein folding drives disulfide formation
,”
Cell
151
,
794
806
(
2012
).
6.
P.
Bechtluft
,
R. G.
van Leeuwen
,
M.
Tyreman
,
D.
Tomkiewicz
,
N.
Nouwen
,
H. L.
Tepper
,
A. J.
Driessen
, and
S. J.
Tans
, “
Direct observation of chaperone-induced changes in a protein folding pathway
,”
Science
30
,
1458
1461
(
2007
).
7.
S.
Haldar
,
R.
Tapia-Rojo
,
E. C.
Eckels
,
J.
Valle-Orero
, and
J. M.
Fernandez
, “
Trigger factor chaperone acts as a mechanical foldase
,”
Nat. Commun.
8
,
668
(
2018
).
8.
J. M.
Fernandez
and
H.
Li
, “
Force-clamp spectroscopy monitors the folding trajectory of a single protein
,”
Science
303
,
1674
1678
(
2004
).
9.
R.
Tapia-Rojo
,
E. C.
Eckels
, and
J. M.
Fernandez
, “
Ephemeral states in protein folding under force captured with a magnetic tweezers design
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
7873
7878
(
2019
).
10.
K.
Neupane
,
D. A. N.
Foster
,
D. R.
Dee
,
H.
Yu
,
F.
Wang
, and
M. T.
Woodside
, “
Direct observation of transition paths during the folding of proteins and nucleic acids
,”
Science
352
,
239
242
(
2016
).
11.
I.
Popa
,
J. A.
Rivas-Pardo
,
E. C.
Eckels
,
D. J.
Echelman
,
C. L.
Badilla
,
J.
Valle-Orero
, and
J. M.
Fernandez
, “
A HaloTag anchored ruler for week-long studies of protein dynamics
,”
J. Am. Chem. Soc.
138
,
10546
(
2016
).
12.
J.
Valle-Orero
,
J. A.
Rivas-Pardo
,
R.
Tapia-Rojo
,
I.
Popa
,
D. J.
Echelman
,
S.
Haldar
, and
J. M.
Fernandez
, “
Mechanical deformation accelerates protein ageing
,”
Angew. Chem., Int. Ed. Engl.
56
,
9741
9746
(
2017
).
13.
J.
Valle-Orero
,
R.
Tapia-Rojo
,
E. C.
Eckels
,
J. A.
Rivas-Pardo
,
I.
Popa
, and
J. M.
Fernández
, “
Proteins breaking bad: A free energy perspective
,”
J. Phys. Chem. Lett.
8
,
3642
3647
(
2017
).
14.
G. I.
Bell
, “
Models for the specific adhesion of cells to cells
,”
Science
200
,
618
(
1978
).
15.
E.
Evans
and
K.
Ritchie
, “
Dynamic strength of molecular adhesion bonds
,”
Biophys. J.
72
,
1541
(
1997
).
16.
G.
Hummer
and
A.
Szabo
, “
Kinetics from nonequilibrium single-molecule pulling experiments
,”
Biophys. J.
85
,
5
(
2003
).
17.
O. K.
Dudko
,
A. E.
Filippoc
,
J.
Klafter
, and
M.
Urbakh
, “
Beyond the conventional description of dynamic force spectroscopy of adhesion bonds
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
11378
(
2003
).
18.
O. K.
Dudko
,
G.
Hummer
, and
A.
Szabo
, “
Intrinsic rates and activation free energies from single-molecule pulling experiments
,”
Phys. Rev. Lett.
96
,
108101
(
2006
).
19.
C.
Jarzysnki
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
(
1997
).
20.
G.
Hummer
and
A.
Szabo
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
3658
(
2000
).
21.
G.
Stirnemann
,
S.
Kang
,
R.
Zhou
, and
B.
Berne
, “
How force unfolding differs from chemical denaturation
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
3413
3418
(
2014
).
22.
L.
Sun
,
J. K.
Noel
,
J. I.
Sulkowska
,
H.
Levine
, and
J. N.
Onuchic
, “
Connecting thermal and mechanical protein (un)folding landscapes
,”
Biophys. J.
107
,
2950
2961
(
2014
).
23.
M. A.
Miller
and
D. J.
Wales
, “
Energy landscape of a model protein
,”
J. Chem. Phys.
111
,
6610
(
1999
).
24.
S.
Brown
,
N. J.
Fawzi
, and
T.
Head-Gordon
, “
Coarse-grained sequences for protein folding and design
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
10712
(
2003
).
25.
M. T.
Oakley
,
D. J.
Wales
, and
R. L.
Johnston
, “
Energy landscape and global optimization for a frustrated model protein
,”
J. Phys. Chem. B
115
,
11525
11529
(
2011
).
26.
A.
Imparato
,
S.
Luccioli
, and
A.
Torcini
, “
Reconstructing the free-energy landscape of a mechanically unfolded model protein
,”
Phys. Rev. Lett.
99
,
168101
(
2007
).
27.
R.
Tapia-Rojo
,
S.
Arregui
,
J. J.
Mazo
, and
F.
Falo
, “
Mechanical unfolding of a simple model protein goes beyond the reach of one-dimensional descriptions
,”
J. Chem. Phys.
141
,
135102
(
2014
).
28.
J. D.
Honeycutt
and
D.
Thirumalai
, “
Metastability of the folded states of globular proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
87
,
3526
(
1990
).
29.

The time unit τ is usually defined in terms of the mass, distance and energy unit of the system, τ=mr2/ϵ. Using the CαCα distance, the average amino-acid mass and the energy of a hydrogen bond we get τ ∼ 3 ps.27 

30.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, Advances in Experimental Medicine and Biology, edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
2014
).
31.
D.
Prada-Gracia
,
J.
Gómez-Gardeñes
,
P.
Echenique
, and
F.
Falo
, “
Exploring the free energy landscape: From dynamics to networks and back
,”
PLoS Comput. Biol.
5
,
e1000415
(
2009
).
32.
R.
Tapia-Rojo
,
J. J.
Mazo
,
J. A.
Hernández
,
M. L.
Peleato
,
M. F.
Fillat
, and
F.
Falo
, “
Mesoscopic model and free energy landscape for protein-DNA binding sites: Analysis of cyanobacterial promoters
,”
PLoS Comput. Biol.
10
,
e1003835
(
2014
).
33.
R.
Tapia-Rojo
,
D.
Prada-Gracia
,
J. J.
Mazo
, and
F.
Falo
, “
Mesoscopic model for free-energy-landscape analysis of DNA sequences
,”
Phys. Rev. E
86
,
021908
(
2012
).
34.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
de Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
35.
C. R.
Schwantes
and
V. S.
Pande
, “
Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
,”
J. Chem. Theory Comput.
9
,
2000
2009
(
2013
).
36.
W.
E
and
E.
Vanden-Eijnden
, “
Towards a theory of transition paths
,”
J. Stat. Phys.
123
,
503
(
2006
).
37.
F.
Noe
,
C.
Schutte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
38.
P.
Metzner
,
C.
Shutte
, and
E.
Vanden-Eijnden
, “
Transition path theory for Markov jump processes
,”
Multiscale Model. Simul.
7
,
1192
(
2009
).
39.
D. J.
Wales
and
P. E. J.
Dewsbury
, “
Effect of salt bridges on the energy landscape of a model protein
,”
J. Chem. Phys.
121
,
10284
(
2004
).
40.
D. J.
Wales
and
T.
Head-Gordon
, “
Evolution of the potential energy landscape with static pulling force for two model proteins
,”
J. Phys. Chem. B
116
,
8394
8411
(
2012
).
41.
E. J.
Guinn
,
B.
Jagannathan
, and
S.
Marqusee
, “
Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein
,”
Nat. Commun.
6
,
6861
(
2015
).
42.
R.
Tapia-Rojo
,
C.
Marcuello
,
A.
Lostao
,
C.
Gomez-Moreno
,
J. J.
Mazo
, and
F.
Falo
, “
A physical picture for mechanical dissociation of biological complexes: From forces to free energies
,”
Phys. Chem. Chem. Phys.
19
,
4567
(
2017
).
43.
D.
de Sancho
and
R. B.
Best
, “
Reconciling intermediates in mechanical unfolding experiments with two-state protein folding in bulk
,”
J. Phys. Chem. Lett.
7
,
3798
3803
(
2016
).
44.
G.
Stirnemann
and
F.
Sterpone
, “
Mechanics of protein adaptation to high temperatures
,”
J. Phys. Chem. Lett.
8
,
5884
5890
(
2017
).
45.
O.
Languin-Cattoen
,
S.
Melchionna
,
P.
Derreumaux
,
G.
Stirnemann
, and
F.
Sterpone
, “
Three weaknesses for three perturbations: Comparing protein unfolding under shear, force, and thermal stresses
,”
J. Phys. Chem. B
122
,
11922
11930
(
2018
).
46.
J.
Schonfelder
,
R.
Pérez-Jiménez
, and
V.
Muñoz
, “
A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution
,”
Nat. Commun.
7
,
11777
(
2015
).
47.
R.
Berkovich
,
S.
Garcia-Manyes
,
K.
Klafter
,
M.
Urbakh
, and
J. M.
Fernandez
, “
Hopping around an entropic barrier created by force
,”
Biochem. Biophys. Res. Commun.
403
,
133
137
(
2010
).
48.
W. A.
Eaton
, “
Searching for “downhill scenarios” in protein folding
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
5897
5899
(
1999
).
49.
P.
Li
,
F. Y.
Oliva
,
A. N.
Naganathan
, and
V.
Muñoz
, “
Dynamics of one-state downhill protein folding
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
103
(
2009
).
50.
M. M.
Garcia-Mira
,
M.
Sadqi
,
N.
Fischer
,
J. M.
Sanchez-Ruiz
, and
V.
Muñoz
, “
Experimental identification of downhill protein folding
,”
Science
298
,
2191
2195
(
2002
).
51.
J.
Schonfelder
,
D.
De Sancho
,
R.
Berkovich
,
R. B.
Best
,
V.
Muñoz
, and
R.
Perez-Jimenez
, “
Reversible two-state folding of the ultrafast protein gpW under mechanical force
,”
Commun. Chem.
1
,
59
(
2018
).
52.
G.
Yuanm
,
S.
Le
,
M.
Yao
,
H.
Qian
,
X.
Zhou
,
J.
Yan
, and
H.
Chen
, “
Elasticity of the transition state leading to an unexpected mechanical stabilization of titin immunoglobulin domains
,”
Angew. Chem.
129
,
5582
(
2017
).
53.
C. A.
Pierse
and
O. K.
Dudko
, “
Distinguishing signatures of multipathway conformational transitions
,”
Phys. Rev. Lett.
118
,
088101
(
2017
).
54.
H. S.
Greenside
and
E.
Helfand
, “
Numerical integration of stochastic differential equations
,”
Bell Syst. Tech. J.
60
,
1927
(
1981
).
55.
S.
Luccioli
,
A.
Imparato
,
S.
Mitternacht
,
A.
Irbäck
, and
A.
Torcini
, “
Unfolding times for proteins in a force clamp
,”
Phys. Rev. E
81
,
010902(R)
(
2010
).
You do not currently have access to this content.