While the solubility of a substance is a fundamental property of widespread significance, its prediction from first principles (starting from only the knowledge of the molecular structure of the solute and solvent) remains a challenge. Recently, we proposed a robust and efficient method to predict the solubility from the density of states of a solute-solvent system using classical molecular simulation. The efficiency, and indeed the generality, of the method has now been enhanced by extending it to calculate solution chemical potentials (rather than probability distributions as done previously), from which solubility may be accessed. The method has been employed to predict the chemical potential of Form 1 of urea in both water and methanol for a range of concentrations at ambient conditions and for two charge models. The chemical potential calculations were validated by thermodynamic integration with the two sets of values being in excellent agreement. The solubility determined from the chemical potentials for urea in water ranged from 0.46 to 0.50 mol kg−1, while that for urea in methanol ranged from 0.62 to 0.85 mol kg−1, over the temperature range 298–328 K. In common with other recent studies of solubility prediction from molecular simulation, the predicted solubilities differ markedly from experimental values, reflecting limitations of current forcefields.

1.
S. J.
Park
and
G.
Ali Mansoori
, “
Aggregation and deposition of heavy organics in petroleum crudes
,”
Energy Sources
10
(
2
),
109
125
(
1988
).
2.
L.
Di
,
P. V.
Fish
, and
T.
Mano
, “
Bridging solubility between drug discovery and development
,”
Drug Discovery Today
17
(
9-10
),
486
495
(
2012
).
3.
J.
Nyman
and
S.
Reutzel-Edens
, “
Crystal structure prediction is changing from basic science to applied technology
,”
Faraday Discuss.
211
,
459
(
2018
).
4.
J. R.
Espinosa
,
J. M.
Young
,
H.
Jiang
,
D.
Gupta
,
C.
Vega
,
E.
Sanz
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
, “
On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
,”
J. Chem. Phys.
145
(
15
),
154111
(
2016
).
5.
J. L.
Aragones
,
E. G.
Noya
,
C.
Valeriani
, and
C.
Vega
, “
Free energy calculations for molecular solids using GROMACS
,”
J. Chem. Phys.
139
(
3
),
034104
(
2013
).
6.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
(
7
),
3188
3193
(
1984
).
7.
M.
Lísal
,
W. R.
Smith
, and
J. J.
Kolafa
, “
Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase
,”
J. Phys. Chem. B
109
(
26
),
12956
12965
(
2005
).
8.
F.
Moučka
,
M.
Lísal
,
J.
Škvor
,
J.
Jirsák
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl
,”
J. Phys. Chem. B
115
(
24
),
7849
7861
(
2011
).
9.
F.
Moučka
,
M.
Lísal
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid
,”
J. Phys. Chem. B
116
(
18
),
5468
5478
(
2012
).
10.
J. L.
Aragones
,
E.
Sanz
, and
C.
Vega
, “
Solubility of NaCl in water by molecular simulation revisited
,”
J. Chem. Phys.
136
(
136
),
244508
(
2012
).
11.
T. P.
Straatsma
and
H. J. C.
Berendsen
, “
Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations
,”
J. Chem. Phys.
89
(
9
),
5876
5886
(
1988
).
12.
T. P.
Straatsma
and
J. A.
McCammon
, “
Computational alchemy
,”
Annu. Rev. Phys. Chem.
43
(
1
),
407
435
(
1992
).
13.
L.
Li
,
T.
Totton
, and
D.
Frenkel
, “
Computational methodology for solubility prediction: Application to the sparingly soluble solutes
,”
J. Chem. Phys.
146
(
21
),
214110
(
2017
).
14.
M. A.
Bellucci
,
G.
Gobbo
,
T. K.
Wijethunga
,
G.
Ciccotti
, and
B. L.
Trout
, “
Solubility of paracetamol in ethanol by molecular dynamics using the extended Einstein crystal method and experiments
,”
J. Chem. Phys.
150
(
9
),
094107
(
2019
).
15.
C. R.
Wand
,
M.
Fayaz-Torshizi
,
G.
Jiménez-Serratos
,
E. A.
Müller
, and
D.
Frenkel
, “
Solubilities of pyrene in organic solvents: Comparison between chemical potential calculations using a cavity-based method and direct coexistence simulations
,”
J. Chem. Thermodyn.
131
,
620
629
(
2019
).
16.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
(
5
),
300
313
(
1935
).
17.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
(
8
),
1420
1426
(
1954
).
18.
C.
Chipot
and
A.
Pohorille
,
Calculating Free Energy Differences Using Perturbation Theory
(
Springer
,
Berlin, Heidelberg
,
2007
), pp.
33
75
.
19.
I.
Cabeza de Vaca
,
R.
Zarzuela
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Robust FEP protocols for creating molecules in solution
,”
J. Chem. Theory Comput.
15
,
3941
(
2019
).
20.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
, “
New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles
,”
J. Chem. Phys.
96
(
3
),
1776
1783
(
1992
).
21.
A. P.
Lyubartsev
,
A.
Laaksonen
, and
P. N.
Vorontsov-Velyaminov
, “
Free energy calculations for Lennard-Jones systems and water using the expanded ensemble method a Monte Carlo and molecular dynamics simulation study
,”
Mol. Phys.
82
(
3
),
455
471
(
1994
).
22.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
(
6
),
529
539
(
1994
).
23.
S.
Boothroyd
,
A.
Kerridge
,
A.
Broo
,
D.
Buttar
, and
J.
Anwar
, “
Solubility prediction from first principles: A density of states approach
,”
Phys. Chem. Chem. Phys.
20
(
32
),
20981
20987
(
2018
).
24.
F.
Wang
and
D.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
(
10
),
2050
2053
(
2001
).
25.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
, “
Generalization of the Wang-Landau method for off-lattice simulations
,”
Phys. Rev. E
66
(
5
),
056703
056709
(
2002
).
26.
S.
Boothroyd
,
A.
Kerridge
,
A.
Broo
,
D.
Buttar
, and
J.
Anwar
, “
Why do some molecules form hydrates or solvates?
,”
Cryst. Growth Des.
18
(
3
),
1903
1908
(
2018
).
27.
M. R.
Shirts
and
V. S.
Pande
, “
Solvation free energies of amino acid side chain analogs for common molecular mechanics water models
,”
J. Chem. Phys.
122
,
134508
(
2005
).
28.
J. L.
Aragones
,
C.
Valeriani
, and
C.
Vega
, “
Note: Free energy calculations for atomic solids through the Einstein crystal/molecule methodology using GROMACS and LAMMPS
,”
J. Chem. Phys.
137
(
14
),
146101
(
2012
).
29.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
London
,
2002
).
30.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
31.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
32.
G. A.
Ozpinar
,
W.
Peukert
, and
T.
Clark
, “
An improved generalized AMBER force field (GAFF) for urea
,”
J. Mol. Model.
16
(
9
),
1427
1440
(
2010
).
33.
C. R.
Groom
,
I. J.
Bruno
,
M. P.
Lightfoot
, and
S. C.
Ward
, “
The Cambridge structural database
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
72
(
2
),
171
179
(
2016
).
34.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
, “
DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism
,”
J. Mater. Chem.
16
(
20
),
1911
1918
(
2006
).
35.
F.-M.
Lee
and
L. E.
Lahti
, “
Solubility of urea in water-alcohol mixtures
,”
J. Chem. Eng. Data
17
(
3
),
304
306
(
1972
).
36.
A. L.
Benavides
,
J. L.
Aragones
, and
C.
Vega
, “
Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,”
J. Chem. Phys.
144
(
12
),
124504
(
2016
).
37.
L.
Li
,
T.
Totton
, and
D.
Frenkel
, “
Computational methodology for solubility prediction: Application to sparingly soluble organic/inorganic materials
,”
J. Chem. Phys.
149
(
5
),
054102
(
2018
).
38.
J.
Anwar
,
D.
Frenkel
, and
M. G.
Noro
, “
Calculation of the melting point of NaCl by molecular simulation
,”
J. Chem. Phys.
118
(
2
),
728
(
2003
).
39.
J.
Anwar
and
D.
Zahn
, “
Polymorphic phase transitions: Macroscopic theory and molecular simulation
,”
Adv. Drug Delivery Rev.
117
,
47
70
(
2017
).
40.
R.
Handel
,
R. L.
Davidchack
,
J.
Anwar
, and
A.
Brukhno
, “
Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface
,”
Phys. Rev. Lett.
100
(
3
),
036104
(
2008
).
41.
R. L.
Davidchack
,
R.
Handel
,
J.
Anwar
, and
A. V.
Brukhno
, “
Ice ih-water interfacial free energy of simple water models with full electrostatic interactions
,”
J. Chem. Theory Comput.
8
(
7
),
2383
2390
(
2012
).
42.
G. C. A. M.
Mooij
,
D.
Frenkel
, and
B.
Smit
, “
Direct simulation of phase equilibria of chain molecules
,”
J. Phys.: Condens. Matter
4
(
16
),
L255
L259
(
1992
).
You do not currently have access to this content.