A generalization of the Schwarz bound employed to reduce the scaling of quantum-chemical calculations is introduced in the context of non-Hermitian methods employing complex-scaled basis functions. Non-Hermitian methods offer a treatment of molecular metastable states in terms of L2-integrable wave functions with complex energies, but until now, an efficient upper bound for the resulting electron-repulsion integrals has been unavailable due to the complications from non-Hermiticity. Our newly formulated bound allows us to inexpensively and rigorously estimate the sparsity in the complex-scaled two-electron integral tensor, providing the basis for efficient integral screening procedures. We have incorporated a screening algorithm based on the new Schwarz bound into the state-of-the-art complex basis function integral code by White, Head-Gordon, and McCurdy [J. Chem. Phys. 142, 054103 (2015)]. The effectiveness of the screening is demonstrated through non-Hermitian Hartree-Fock calculations of the static field ionization of the 2-pyridoxine 2-aminopyridine molecular complex.

1.
T.-C.
Jagau
,
K. B.
Bravaya
, and
A. I.
Krylov
,
Annu. Rev. Phys. Chem.
68
,
525
(
2017
).
2.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
, 1st ed. (
Cambridge University Press
,
2011
).
3.
J. P.
Marangos
,
J. Phys. B: At., Mol. Opt. Phys.
49
,
132001
(
2016
).
4.
T.
Zuo
,
A.
Bandrauk
, and
P.
Corkum
,
Chem. Phys. Lett.
259
,
313
(
1996
).
5.
Z.
Vager
,
R.
Naaman
, and
E. P.
Kanter
,
Science
244
,
426
(
1989
).
7.
A. J. F.
Siegert
,
Phys. Rev.
56
,
750
(
1939
).
8.
E.
Balslev
and
J. M.
Combes
,
Commun. Math. Phys.
22
,
280
(
1971
).
9.
J.
Aguilar
and
J. M.
Combes
,
Commun. Math. Phys.
22
,
269
(
1971
).
10.
B.
Simon
,
Commun. Math. Phys.
27
,
1
(
1972
).
11.
I. W.
Herbst
and
B.
Simon
,
Phys. Rev. Lett.
41
,
67
(
1978
).
12.
I. W.
Herbst
,
Commun. Math. Phys.
64
,
279
(
1979
).
13.
I. W.
Herbst
and
B.
Simon
,
Commun. Math. Phys.
80
,
181
(
1981
).
15.
C. W.
McCurdy
and
T. N.
Rescigno
,
Phys. Rev. Lett.
41
,
1364
(
1978
).
16.
K. B.
Bravaya
,
D.
Zuev
,
E.
Epifanovsky
, and
A. I.
Krylov
,
J. Chem. Phys.
138
,
124106
(
2013
).
17.
N.
Moiseyev
and
C.
Corcoran
,
Phys. Rev. A
20
,
814
(
1979
).
18.
T. N.
Rescigno
,
A. E.
Orel
, and
C. W.
McCurdy
,
J. Chem. Phys.
73
,
6347
(
1980
).
19.
C. W.
McCurdy
,
T. N.
Rescigno
,
E. R.
Davidson
, and
J. G.
Lauderdale
,
J. Chem. Phys.
73
,
3268
(
1980
).
20.
M.
Mishra
,
Y.
Öhrn
, and
P.
Froelich
,
Phys. Lett. A
84
,
4
(
1981
).
21.
C. W.
McCurdy
and
R. C.
Mowrey
,
Phys. Rev. A
25
,
2529
(
1982
).
22.
J. G.
Lauderdale
,
C. W.
McCurdy
, and
A. U.
Hazi
,
J. Chem. Phys.
79
,
2200
(
1983
).
23.
M.
Honigmann
,
R. J.
Buenker
, and
H.-P.
Liebermann
,
J. Chem. Phys.
125
,
234304
(
2006
).
24.
M.
Honigmann
,
R. J.
Buenker
, and
H.-P.
Liebermann
,
J. Chem. Phys.
131
,
034303
(
2009
).
25.
A. F.
White
,
C. W.
McCurdy
, and
M.
Head-Gordon
,
J. Chem. Phys.
143
,
074103
(
2015
).
26.
A. F.
White
,
M.
Head-Gordon
, and
C. W.
McCurdy
,
J. Chem. Phys.
142
,
054103
(
2015
).
27.
A. F.
White
,
E.
Epifanovsky
,
C. W.
McCurdy
, and
M.
Head-Gordon
,
J. Chem. Phys.
146
,
234107
(
2017
).
28.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
29.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
30.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
31.
C.
Ochsenfeld
,
Chem. Phys. Lett.
327
,
216
(
2000
).
32.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
134114
(
2013
).
33.
A. S.
Erik
,
I.
Tellgren
, and
T.
Helgaker
,
J. Chem. Phys.
129
,
154114
(
2008
).
34.
S.
Stopkowicz
,
J.
Gauss
,
K. K.
Lange
,
E. I.
Tellgren
, and
T.
Helgaker
,
J. Chem. Phys.
143
,
074110
(
2015
).
35.
P.
Čársky
and
M.
Polášek
,
J. Comput. Phys.
143
,
266
(
1998
).
36.
C.
Winstead
and
V.
McKoy
,
Comput. Phys. Commun.
128
,
386
(
2000
).
37.
M.
Tachikawa
and
M.
Shiga
,
Phys. Rev. E
64
,
056706
(
2001
).
38.
L.
Füsti-Molnar
and
P.
Pulay
,
J. Phys. Chem.
116
,
7795
(
2002
).
39.
C.
Winstead
and
V.
McKoy
, in
Modern Electronic Structure Theory: Part II
, edited by
D. R.
Yarkony
(
World Scientific
,
1995
), Chap. 22, pp.
1375
1462
.
40.
T.-C.
Jagau
,
J. Chem. Phys.
145
,
204115
(
2016
).
41.
T.-C.
Jagau
,
J. Chem. Phys.
148
,
204102
(
2018
).
42.
M.
Hernandez Vera
and
T.-C.
Jagau
,
J. Chem. Phys.
151
,
111101
(
2019
).
43.
N.
Moiseyev
,
P.
Certain
, and
F.
Weinhold
,
Mol. Phys.
36
,
1613
(
1978
).
45.

In non-Hermitian quantum mechanics, it is common practice to indicate the c-product by using parentheses instead of chevrons. To avoid confusion with Mulliken notation, we do not follow this practice.

46.
N.
Moiseyev
,
P. R.
Certain
, and
F.
Weinhold
,
Int. J. Quantum Chem.
14
,
727
(
1978
).
47.
E.
Lieb
and
M.
Loss
,
Analysis
, CRM Proceedings & Lecture Notes (
American Mathematical Society
,
2001
).
48.
T. H.
Thompson
and
C.
Ochsenfeld
,
J. Chem. Phys.
147
,
144101
(
2017
).
49.
J.
Kussmann
,
M.
Beer
, and
C.
Ochsenfeld
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
614
(
2013
).
50.
T. H.
Thompson
and
C.
Ochsenfeld
,
J. Chem. Phys.
150
,
044101
(
2019
).
51.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H.
Lee Woodcock
 III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
Mol. Phys.
113
,
184
(
2015
).
52.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
53.
See http://www.begdb.com, where the molecular coordinates of a variety of benchmark sets are available for download, including the S22 set from which the 2-pyridoxine 2-aminopyridine molecule was taken.
54.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
55.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
56.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
100
,
2975
(
1994
).
57.
58.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
59.
S. A.
Maurer
,
D. S.
Lambrecht
,
D.
Flaig
, and
C.
Ochsenfeld
,
J. Chem. Phys.
136
,
144107
(
2012
).
You do not currently have access to this content.