Chain molecules play important roles in industry and in living cells. Our focus here is on distinct ways of modeling the stiffness inherent in a chain molecule. We consider three types of stiffnesses—one yielding an energy penalty for local bends (energetic stiffness) and the other two forbidding certain classes of chain conformations (entropic stiffness). Using detailed Wang-Landau microcanonical Monte Carlo simulations, we study the interplay between the nature of the stiffness and the ground state conformation of a self-attracting chain. We find a wide range of ground state conformations, including a coil, a globule, a toroid, rods, helices, and zig-zag strands resembling β-sheets, as well as knotted conformations allowing us to bridge conventional polymer phases and biomolecular phases. An analytical mapping is derived between the persistence lengths stemming from energetic and entropic stiffness. Our study shows unambiguously that different stiffnesses play different physical roles and have very distinct effects on the nature of the ground state of the conformation of a chain, even if they lead to identical persistence lengths.

1.
A.
Lesk
,
Introduction to Protein Science: Architecture, Function, and Genomics
(
Oxford University Press
,
2010
).
2.
A. V.
Finkelstein
and
O.
Ptitsyn
,
Protein Physics, Second Edition: A Course of Lectures
, Soft Condensed Matter, Complex Fluids and Biomaterials, 2nd ed. (
Academic Press
,
2016
), p.
7
.
3.
C.
Micheletti
,
D.
Marenduzzo
, and
E.
Orlandini
, “
Polymers with spatial or topological constraints: Theoretical and computational results
,”
Phys. Rep.
504
(
1
),
1
73
(
2011
).
4.
M.
Chwastyk
and
M.
Cieplak
, “
Cotranslational folding of deeply knotted proteins
,”
J. Phys.: Condens. Matter
27
(
35
),
354105
(
2015
).
5.
K.
Alexander
,
A. J.
Taylor
, and
M. R.
Dennis
, “
Proteins analysed as virtual knots
,”
Sci. Rep.
7
,
42300
(
2017
).
6.
M. P.
Taylor
,
W.
Paul
, and
K.
Binder
, “
Phase transitions of a single polymer chain: A Wang–Landau simulation study
,”
J. Chem. Phys.
131
,
114907
(
2009
).
7.
S. M.
Bhattacharjee
,
A.
Giacometti
, and
A.
Maritan
, “
Flory theory for polymers
,”
J. Phys.: Condens. Matter
25
,
503101
(
2013
).
8.
P.
Flory
,
Statistical Mechanics of Chain Molecules
(
Interscience Publishers
,
1969
).
9.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
(
American Institute of Physics
,
1994
), p.
3
.
10.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics (Chemistry)
, 1st ed. (
Oxford University Press
,
2003
), p.
6
.
11.
A.
Vologodskii
,
Biophysics of DNA
(
Cambridge University Press
,
2015
).
12.
T. X.
Hoang
,
A.
Giacometti
,
R.
Podgornik
,
N. T. T.
Nguyen
,
J. R.
Banavar
, and
A.
Maritan
, “
From toroidal to rod-like condensates of semiflexible polymers
,”
J. Chem. Phys.
140
,
064902
(
2014
).
13.
T. X.
Hoang
,
H. L.
Trinh
,
A.
Giacometti
,
R.
Podgornik
,
J. R.
Banavar
, and
A.
Maritan
, “
Phase diagram of the ground states of DNA condensates
,”
Phys. Rev. E
92
,
060701
(
2015
).
14.
S.
Ranganathan
,
S. K.
Maji
, and
R.
Padinhateeri
, “
Defining a physical basis for diversity in protein self-assemblies using a minimal model
,”
J. Am. Chem. Soc.
138
,
13911
13922
(
2016
).
15.
T.
Škrbić
,
A.
Badasyan
,
T. X.
Hoang
,
R.
Podgornik
, and
A.
Giacometti
, “
From polymers to proteins: The effect of side chains and broken symmetry on the formation of secondary structures within a Wang–Landau approach
,”
Soft Matter
12
(
21
),
4783
4793
(
2016
).
16.
T.
Škrbić
,
T. X.
Hoang
, and
A.
Giacometti
, “
Effective stiffness and formation of secondary structures in a protein-like model
,”
J. Chem. Phys.
145
,
084904
(
2016
).
17.
M. V.
Volkenstein
,
Configurational Statistics of Polymeric Chains
(
Interscience Publishers
,
1963
), Vol. 17.
18.
C.
Clementi
,
A.
Maritan
, and
J.
Banavar
, “
Folding, design, and determination of interaction potentials using off-lattice dynamics of model heteropolymers
,”
Phys. Rev. Lett.
81
,
3287
3290
(
1998
).
19.
J.
Magee
,
V.
Vasquez
, and
L.
Lue
, “
Helical structures from an isotropic homopolymer model
,”
Phys. Rev. Lett.
96
,
207802
(
2006
).
20.
A.
Maritan
,
C.
Micheletti
,
A.
Trovato
, and
J.
Banavar
, “
Optimal shapes of compact strings
,”
Nature
406
,
287
290
(
2000
).
21.
T.
Hoang
,
A.
Trovato
,
F.
Seno
,
J.
Banavar
, and
A.
Maritan
, “
Geometry and symmetry presculpt the free-energy landscape of proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
7960
7964
(
2004
).
22.
J. R.
Banavar
and
A.
Maritan
, “
Physics of proteins
,”
Annu. Rev. Biophys. Biomol. Struct.
36
,
261
280
(
2007
).
23.
T.
Škrbić
,
T. X.
Hoang
,
A.
Maritan
,
J. R.
Banavar
, and
A.
Giacometti
, “
Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides
,”
Soft Matter
15
,
5596
(
2019
).
24.
P.
Chaikin
and
T.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
2000
).
25.
T.
Škrbić
,
T. X.
Hoang
,
A.
Maritan
,
J. R.
Banavar
, and
A.
Giacometti
, “
The elixir phase of chain molecules
,”
Proteins: Struct., Funct., Bioinf.
87
(
3
),
176
184
(
2019
).
26.
B.
Werlich
,
M. P.
Taylor
,
T.
Shakirov
, and
W.
Paul
, “
On the pseudo phase diagram of single semi-flexible polymer chains: A flat-histogram Monte Carlo study
,”
Polymers
9
,
38
(
2017
).
27.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
28.
C.
Micheletti
,
D.
Marenduzzo
,
E.
Orlandini
, and
D.
Summers
, “
Knotting of random ring polymers in confined spaces
,”
J. Chem. Phys.
124
(
6
),
064903
(
2006
).
29.
L.
Tubiana
,
E.
Orlandini
, and
C.
Micheletti
, “
Probing the entanglement and locating knots in ring polymers: A comparative study of different arc closure schemes
,”
Prog. Theor. Phys. Suppl.
191
,
192
204
(
2011
).
30.
K.
Millett
,
A.
Dobay
, and
A.
Stasiak
, “
Linear random knots and their scaling behavior
,”
Macromolecules
38
(
2
),
601
606
(
2005
).
31.
D. T.
Seaton
,
S.
Schnabel
,
D. P.
Landau
, and
M.
Bachmann
, “
From flexible to stiff: Systematic analysis of structural phases for single semiflexible polymers
,”
Phys. Rev. Lett.
110
,
028103
(
2013
).
32.
M.
Marenz
and
W.
Janke
, “
Knots as a topological order parameter for semiflexible polymers
,”
Phys. Rev. Lett.
116
,
128301
(
2016
).
33.
G.
Ramachandran
and
V.
Sasisekharan
, “
Conformation of polypeptide and proteins
,”
Adv. Protein Chem.
23
,
283
437
(
1968
).
34.
G. D.
Rose
, “
Ramachandran maps for side chains in globular proteins
,”
Proteins
87
(
5
),
357
364
(
2019
).
35.
M.
Levitt
and
C.
Chothia
, “
Structural patterns in globular proteins
,”
Nature
261
(
5561
),
552
558
(
1976
).
36.
N.
Toan
,
D.
Marenduzzo
, and
C.
Micheletti
, “
Inferring the diameter of a biopolymer from its stretching response
,”
Biophys. J.
89
,
80
86
(
2005
).
37.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
, Applied Mathematics Series (
Dover Publications
,
1965
).
You do not currently have access to this content.