The atomistic simulation of supported metal catalysts has long been challenging due to the increased complexity of dual components. In order to determine the metal/support interface, efficient theoretical tools to map out the potential energy surface (PES) are generally required. This work represents the first attempt to apply the recently developed SSW-NN method, stochastic surface walking (SSW) global optimization based on global neural network potential (G-NN), to explore the PES of a highly controversial supported metal catalyst, Au/CeO2, system. By establishing the ternary Au–Ce–O G-NN potential based on first principles global dataset, we have searched for the global minima for a series of Au/CeO2 systems. The segregation and diffusion pathway for Au clusters on CeO2(111) are then explored by using enhanced molecular dynamics. Our results show that the ultrasmall cationic Au clusters, e.g., Au4O2, attaching to surface structural defects are the only stable structural pattern and the other clusters on different CeO2 surfaces all have a strong energy preference to grow into a bulky Au metal. Despite the thermodynamics tendency of sintering, Au clusters on CeO2 have a high kinetics barrier (>1.4 eV) in segregation and diffusion. The high thermodynamics stability of ultrasmall cationic Au clusters and the high kinetics stability for Au clusters on CeO2 are thus the origin for the high activity of Au/CeO2 catalysts in a range of low temperature catalytic reactions. We demonstrate that the global PES exploration is critical for understanding the morphology and kinetics of metal clusters on oxide support, which now can be realized via the SSW-NN method.

1.
M.
Haruta
,
Nature
437
(
7062
),
1098
1099
(
2005
).
2.
A. S. K.
Hashmi
and
G. J.
Hutchings
,
Angew. Chem., Int. Ed.
45
(
47
),
7896
7936
(
2006
).
3.
M.
Haruta
,
N.
Yamada
,
T.
Kobayashi
, and
S.
Iijima
,
J. Catal.
115
(
2
),
301
309
(
1989
).
4.
B.
Qiao
,
J.-X.
Liang
,
A.
Wang
,
C.-Q.
Xu
,
J.
Li
,
T.
Zhang
, and
J. J.
Liu
,
Nano Res.
8
(
9
),
2913
2924
(
2015
).
5.
A.
Wittstock
,
V.
Zielasek
,
J.
Biener
,
C. M.
Friend
, and
M.
Bäumer
,
Science
327
(
5963
),
319
(
2010
).
6.
M.
Kantcheva
,
O.
Samarskaya
,
L.
Ilieva
,
G.
Pantaleo
,
A. M.
Venezia
, and
D.
Andreeva
,
Appl. Catal., B
88
(
1
),
113
126
(
2009
).
7.
L.
Ilieva
,
G.
Pantaleo
,
N.
Velinov
,
T.
Tabakova
,
P.
Petrova
,
I.
Ivanov
,
G.
Avdeev
,
D.
Paneva
, and
A. M.
Venezia
,
Appl. Catal., B
174-175
,
176
184
(
2015
).
8.
J.
Guzman
and
B. C.
Gates
,
Angew. Chem., Int. Ed.
42
(
6
),
690
693
(
2003
).
9.
H.
Häkkinen
,
S.
Abbet
,
A.
Sanchez
,
U.
Heiz
, and
U.
Landman
,
Angew. Chem., Int. Ed.
42
(
11
),
1297
1300
(
2003
).
10.
J. A.
Rodriguez
,
P.
Liu
,
J.
Hrbek
,
J.
Evans
, and
M.
Pérez
,
Angew. Chem., Int. Ed.
46
(
8
),
1329
1332
(
2007
).
11.
M.
Stratakis
and
H.
Garcia
,
Chem. Rev.
112
(
8
),
4469
4506
(
2012
).
12.
J. A.
Rodriguez
,
Catal. Today
160
(
1
),
3
10
(
2011
).
13.
Q.
Fu
,
H.
Saltsburg
, and
M.
Flytzani-Stephanopoulos
,
Science
301
(
5635
),
935
(
2003
).
14.
H.
Sakurai
,
T.
Akita
,
S.
Tsubota
,
M.
Kiuchi
, and
M.
Haruta
,
Appl. Catal., A
291
(
1
),
179
187
(
2005
).
15.
N. J.
Lawrence
,
J. R.
Brewer
,
L.
Wang
,
T.-S.
Wu
,
J.
Wells-Kingsbury
,
M. M.
Ihrig
,
G.
Wang
,
Y.-L.
Soo
,
W.-N.
Mei
, and
C. L.
Cheung
,
Nano Lett.
11
(
7
),
2666
2671
(
2011
).
16.
D.
Widmann
,
R.
Leppelt
, and
R. J.
Behm
,
J. Catal.
251
(
2
),
437
442
(
2007
).
17.
J.
Guzman
,
S.
Carrettin
, and
A.
Corma
,
J. Am. Chem. Soc.
127
(
10
),
3286
3287
(
2005
).
18.
D.
Tibiletti
,
A. A.
Fonseca
,
R.
Burch
,
Y.
Chen
,
J. M.
Fisher
,
A.
Goguet
,
C.
Hardacre
,
P.
Hu
, and
D.
Thompsett
,
J. Phys. Chem. B
109
(
47
),
22553
22559
(
2005
).
19.
C. H.
Kim
and
L. T.
Thompson
,
J. Catal.
244
(
2
),
248
250
(
2006
).
20.
X.
Wang
,
J. A.
Rodriguez
,
J. C.
Hanson
,
M.
Pérez
, and
J.
Evans
,
J. Chem. Phys.
123
(
22
),
221101
(
2005
).
21.
J.-F.
Jerratsch
,
X.
Shao
,
N.
Nilius
,
H.-J.
Freund
,
C.
Popa
,
M. V.
Ganduglia-Pirovano
,
A. M.
Burow
, and
J.
Sauer
,
Phys. Rev. Lett.
106
(
24
),
246801
(
2011
).
22.
K.
Kośmider
,
V.
Brázdová
,
M. V.
Ganduglia-Pirovano
, and
R.
Pérez
,
J. Phys. Chem. C
120
(
2
),
927
933
(
2016
).
23.
D. A.
Andersson
,
S. I.
Simak
,
B.
Johansson
,
I. A.
Abrikosov
, and
N. V.
Skorodumova
,
Phys. Rev. B
75
(
3
),
035109
(
2007
).
24.
S.
Fabris
,
G.
Vicario
,
G.
Balducci
,
S.
de Gironcoli
, and
S.
Baroni
,
J. Phys. Chem. B
109
(
48
),
22860
22867
(
2005
).
25.
Z.-P.
Liu
,
S. J.
Jenkins
, and
D. A.
King
,
Phys. Rev. Lett.
94
(
19
),
196102
(
2005
).
26.
C.
Zhang
,
A.
Michaelides
,
D. A.
King
, and
S. J.
Jenkins
,
J. Chem. Phys.
129
(
19
),
194708
(
2008
).
27.
M. F.
Camellone
and
S.
Fabris
,
J. Am. Chem. Soc.
131
(
30
),
10473
10483
(
2009
).
28.
W.
Song
and
E. J. M.
Hensen
,
ACS Catal.
4
(
6
),
1885
1892
(
2014
).
29.
H. Y.
Kim
,
H. M.
Lee
, and
G.
Henkelman
,
J. Am. Chem. Soc.
134
(
3
),
1560
1570
(
2012
).
30.
Y.
Chen
,
J.
Cheng
,
P.
Hu
, and
H.
Wang
,
Surf. Sci.
602
(
17
),
2828
2834
(
2008
).
31.
C.
Shang
and
Z.-P.
Liu
,
J. Chem. Theory Comput.
9
(
3
),
1838
1845
(
2013
).
32.
C.
Shang
,
X.-J.
Zhang
, and
Z.-P.
Liu
,
Phys. Chem. Chem. Phys.
16
(
33
),
17845
17856
(
2014
).
33.
S.-D.
Huang
,
C.
Shang
,
X.-J.
Zhang
, and
Z.-P.
Liu
,
Chem. Sci.
8
(
9
),
6327
6337
(
2017
).
34.
S.-D.
Huang
,
C.
Shang
,
P.-L.
Kang
, and
Z.-P.
Liu
,
Chem. Sci.
9
(
46
),
8644
8655
(
2018
).
35.
S.
Ma
,
S.-D.
Huang
, and
Z.-P.
Liu
,
Nat. Catal.
2
(
8
),
671
677
(
2019
).
36.
S.
Ma
,
S.-D.
Huang
,
Y.-H.
Fang
, and
Z.-P.
Liu
,
ACS Catal.
8
(
10
),
9711
9721
(
2018
).
37.
A.
Barducci
,
M.
Bonomi
, and
M.
Parrinello
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
5
),
826
843
(
2011
).
38.
J.
Kästner
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
6
),
932
942
(
2011
).
39.
S.-D.
Huang
,
C.
Shang
,
P.-L.
Kang
,
X.-J.
Zhang
, and
Z.-P.
Liu
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1415
(
2019
).
40.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
41.
S.
Ma
,
C.
Shang
, and
Z.-P.
Liu
,
J. Chem. Phys.
151
(
5
),
050901
(
2019
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
43.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
(
3
),
943
954
(
1991
).
44.
F.
Esch
,
S.
Fabris
,
L.
Zhou
,
T.
Montini
,
C.
Africh
,
P.
Fornasiero
,
G.
Comelli
, and
R.
Rosei
,
Science
309
(
5735
),
752
(
2005
).
45.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
J. Phys. Chem. B
110
(
5
),
2256
2262
(
2006
).
46.
N. C.
Hernández
,
R.
Grau-Crespo
,
N. H.
de Leeuw
, and
J. F.
Sanz
,
Phys. Chem. Chem. Phys.
11
(
26
),
5246
5252
(
2009
).
47.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
Surf. Sci.
595
(
1
),
223
232
(
2005
).
48.
B.
Herschend
,
M.
Baudin
, and
K.
Hermansson
,
J. Chem. Phys.
126
(
23
),
234706
(
2007
).
49.
M. V.
Ganduglia-Pirovano
,
J. L. F.
Da Silva
, and
J.
Sauer
,
Phys. Rev. Lett.
102
(
2
),
026101
(
2009
).
50.
P. R. L.
Keating
,
D. O.
Scanlon
, and
G. W.
Watson
,
J. Phys.: Condens. Matter
21
(
40
),
405502
(
2009
).
51.
H.-Y.
Li
,
H.-F.
Wang
,
X.-Q.
Gong
,
Y.-L.
Guo
,
Y.
Guo
,
G.
Lu
, and
P.
Hu
,
Phys. Rev. B
79
(
19
),
193401
(
2009
).
52.
M.
Nolan
,
S.
Grigoleit
,
D. C.
Sayle
,
S. C.
Parker
, and
G. W.
Watson
,
Surf. Sci.
576
(
1
),
217
229
(
2005
).
53.
Y.
Chen
,
P.
Hu
,
M.-H.
Lee
, and
H.
Wang
,
Surf. Sci.
602
(
10
),
1736
1741
(
2008
).
54.
C.
Zhang
,
A.
Michaelides
,
D. A.
King
, and
S. J.
Jenkins
,
Phys. Rev. B
79
(
7
),
075433
(
2009
).
55.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
56.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
57.
G. M.
Torrie
and
J. P.
Valleau
,
J. Chem. Phys.
66
(
4
),
1402
1408
(
1977
).
58.
H.-Y.
Li
,
H.-F.
Wang
,
Y.-L.
Guo
,
G.-Z.
Lu
, and
P.
Hu
,
Chem. Commun.
47
(
21
),
6105
6107
(
2011
).
59.
S.
Torbrügge
,
M.
Reichling
,
A.
Ishiyama
,
S.
Morita
, and
Ó.
Custance
,
Phys. Rev. Lett.
99
(
5
),
056101
(
2007
).
60.
K.
Reuter
and
M.
Scheffler
,
Phys. Rev. B
65
(
3
),
035406
(
2001
).
61.
C.
Zhang
,
A.
Michaelides
,
D. A.
King
, and
S. J.
Jenkins
,
J. Am. Chem. Soc.
132
(
7
),
2175
2182
(
2010
).
62.
X.-J.
Zhang
,
C.
Shang
, and
Z.-P.
Liu
,
J. Chem. Theory Comput.
9
(
12
),
5745
5753
(
2013
).
63.
C. H.
Kim
and
L. T.
Thompson
,
J. Catal.
230
(
1
),
66
74
(
2005
).
64.
C.
Zhang
,
A.
Michaelides
, and
S. J.
Jenkins
,
Phys. Chem. Chem. Phys.
13
(
1
),
22
33
(
2011
).
65.
C. T.
Campbell
and
C. H. F.
Peden
,
Science
309
(
5735
),
713
(
2005
).
66.
M.
Flytzani-Stephanopoulos
,
Acc. Chem. Res.
47
(
3
),
783
792
(
2014
).
67.
D. C.
Meier
and
D. W.
Goodman
,
J. Am. Chem. Soc.
126
(
6
),
1892
1899
(
2004
).
68.
Z.-P.
Liu
,
P.
Hu
, and
A.
Alavi
,
J. Am. Chem. Soc.
124
(
49
),
14770
14779
(
2002
).
69.
M. J.
Piotrowski
,
P.
Tereshchuk
, and
J. L. F.
Da Silva
,
J. Phys. Chem. C
118
(
37
),
21438
21446
(
2014
).
70.
P.
Tereshchuk
,
R. L. H.
Freire
,
C. G.
Ungureanu
,
Y.
Seminovski
,
A.
Kiejna
, and
J. L. F.
Da Silva
,
Phys. Chem. Chem. Phys.
17
(
20
),
13520
13530
(
2015
).
71.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
(
28
),
5111
5116
(
1997
).
72.
J. L. F.
Da Silva
,
M. J.
Piotrowski
, and
F.
Aguilera-Granja
,
Phys. Rev. B
86
(
12
),
125430
(
2012
).
73.
M. J.
Piotrowski
,
P.
Piquini
,
L.
Cândido
, and
J. L. F.
Da Silva
,
Phys. Chem. Chem. Phys.
13
(
38
),
17242
17248
(
2011
).
74.
C.
Zhang
,
A.
Michaelides
,
D. A.
King
, and
S. J.
Jenkins
,
J. Phys. Chem. C
113
(
16
),
6411
6417
(
2009
).

Supplementary Material

You do not currently have access to this content.