Over this past decade, we combined the idea of stochastic resolution of identity with a variety of electronic structure methods. In our stochastic Kohn-Sham density functional theory (DFT) method, the density is an average over multiple stochastic samples, with stochastic errors that decrease as the inverse square root of the number of sampling orbitals. Here, we develop a stochastic embedding density functional theory method (se-DFT) that selectively reduces the stochastic error (specifically on the forces) for a selected subsystem(s). The motivation, similar to that of other quantum embedding methods, is that for many systems of practical interest, the properties are often determined by only a small subsystem. In stochastic embedding DFT, two sets of orbitals are used: a deterministic one associated with the embedded subspace and the rest, which is described by a stochastic set. The method agrees exactly with deterministic calculations in the limit of a large number of stochastic samples. We apply se-DFT to study a p-nitroaniline molecule in water, where the statistical errors in the forces on the system (the p-nitroaniline molecule) are reduced by an order of magnitude compared with nonembedding stochastic DFT.

1.
W. C.
Witt
,
B. G.
del Rio
,
J. M.
Dieterich
, and
E. A.
Carter
, “
Orbital-free density functional theory for materials research
,”
J. Mater. Res.
33
(
07
),
777
795
(
2018
).
2.
J.
Lehtomäki
,
I.
Makkonen
,
M. A.
Caro
,
A.
Harju
, and
O.
Lopez-Acevedo
, “
Orbital-free density functional theory implementation with the projector augmented-wave method
,”
J. Chem. Phys.
141
(
23
),
234102
(
2014
).
3.
T.-S.
Lee
,
J. P.
Lewis
, and
W.
Yang
, “
Linear-scaling quantum mechanical calculations of biological molecules: The divide-and-conquer approach
,”
Comput. Mater. Sci.
12
(
3
),
259
277
(
1998
).
4.
T. A.
Wesolowski
and
A.
Warshel
, “
Frozen density functional approach for ab initio calculations of solvated molecules
,”
J. Phys. Chem.
97
(
30
),
8050
8053
(
1993
).
5.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
, “
Frozen-density embedding strategy for multilevel simulations of electronic structure
,”
Chem. Rev.
115
(
12
),
5891
5928
(
2015
).
6.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
, “
Density functional embedding for molecular systems
,”
Chem. Phys. Lett.
421
(
1-3
),
16
20
(
2006
).
7.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Self-averaging stochastic Kohn-Sham density-functional theory
,”
Phys. Rev. Lett.
111
(
10
),
106402
(
2013
).
8.
Y.
Cytter
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Stochastic density functional theory at finite temperatures
,”
Phys. Rev. B
97
,
115207
(
2018
).
9.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory
,”
J. Chem. Phys.
146
(
22
),
224111
(
2017
).
10.
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Communication: Embedded Fragment Stochastic Density Functional Theory
,”
J. Chem. Phys.
141
,
041102
(
2014
).
11.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
,”
J. Chem. Phys.
150
(
3
),
034106
(
2019
).
12.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
, “
A simple, exact density-functional-theory embedding scheme
,”
J. Chem. Theory Comput.
8
(
8
),
2564
2568
(
2012
).
13.
P. K.
Tamukong
,
Y. G.
Khait
, and
M. R.
Hoffmann
, “
Density differences in embedding theory with external orbital orthogonality
,”
J. Phys. Chem. A
118
(
39
),
9182
9200
(
2014
).
14.
B.
Hégely
,
P. R.
Nagy
,
G. G.
Ferenczy
, and
M.
Kállay
, “
Exact density functional and wave function embedding schemes based on orbital localization
,”
J. Chem. Phys.
145
(
6
),
064107
(
2016
).
15.
C.
Tanner
,
K. R.
Brorsen
, and
S.
Hammes-Schiffer
, “
Communication: Density functional theory embedding with the orthogonality constrained basis set expansion procedure
,”
J. Chem. Phys.
146
(
21
),
211101
(
2017
).
16.
A. S.
Pereira Gomes
,
C. R.
Jacob
, and
L.
Visscher
, “
Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory
,”
Phys. Chem. Chem. Phys.
10
(
35
),
5353
5362
(
2008
).
17.
D.
Loco
,
L.
Lagardère
,
S.
Caprasecca
,
F.
Lipparini
,
B.
Mennucci
, and
J.-P.
Piquemal
, “
Hybrid QM/MM molecular dynamics with AMOEBA polarizable embedding
,”
J. Chem. Theory Comput.
13
(
9
),
4025
4033
(
2017
).
18.
Q.
Sun
and
G. K.-L.
Chan
, “
Quantum embedding theories
,”
Acc. Chem. Res.
49
(
12
),
2705
2712
(
2016
).
19.
T. A.
Wesolowski
and
A.
Savin
, “
Non-additive kinetic energy and potential in analytically solvable systems and their approximated counterparts
,” in
Recent Progress in Orbital-free Density Functional Theory
(
World Scientific
,
2013
), pp.
275
295
.
20.
D. G.
Jason
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
 III
, “
Exact nonadditive kinetic potentials for embedded density functional theory
,”
J. Chem. Phys.
133
(
8
),
084103
(
2010
).
21.
D. G.
Jason
,
T. A.
Barnes
, and
T. F.
Miller
 III
, “
Embedded density functional theory for covalently bonded and strongly interacting subsystems
,”
J. Chem. Phys.
134
(
16
),
164108
(
2011
).
22.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
, “
Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds
,”
J. Chem. Phys.
132
(
16
),
164101
(
2010
).
23.
D.
Schnieders
and
J.
Neugebauer
, “
Accurate embedding through potential reconstruction: A comparison of different strategies
,”
J. Chem. Phys.
149
(
5
),
054103
(
2018
).
24.
Y. G.
Khait
and
M. R.
Hoffmann
, “
On the orthogonality of orbitals in subsystem Kohn–Sham density functional theory
,” in
Annual Reports in Computational Chemistry
(
Elsevier
,
2012
), Vol. 8, pp.
53
70
.
25.
P. K.
Tamukong
,
Y. G.
Khait
, and
M. R.
Hoffmann
, “
Accurate dissociation of chemical bonds using DFT-in-DFT embedding theory with external orbital orthogonality
,”
J. Phys. Chem. A
121
(
1
),
256
264
(
2016
).
26.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
(
1-3
),
43
56
(
1995
).
27.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
28.
W. L.
Jorgensen
and
J. D.
Madura
, “
Temperature and size dependence for Monte Carlo simulations of TIP4P water
,”
Mol. Phys.
56
(
6
),
1381
1392
(
1985
).
29.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
(
2
),
103
128
(
2005
).
30.
We specifically used the DZVP-GTH-PADE basis for all atoms, in the CONFINED variant where available. The basis-set is available from https://github.com/SINGROUP/pycp2k/blob/master/examples/BASIS_SET.
31.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
 et al., “
Advanced capabilities for materials modelling with quantum espresso
,”
J. Phys.: Condens. Matter
29
(
46
),
465901
(
2017
).
32.
Y.
Gao
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Sublinear scaling for time-dependent stochastic density functional theory
,”
J. Chem. Phys.
142
(
3
),
034106
(
2015
).
33.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
, and
Others
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
(
5
),
62
74
(
2014
).
You do not currently have access to this content.