In the nonequilibrium Green’s function approach, the approximation of the correlation self-energy at the second-Born level is of particular interest, since it allows for a maximal speed-up in computational scaling when used together with the generalized Kadanoff-Baym ansatz for the Green’s function. The present day numerical time-propagation algorithms for the Green’s function are able to tackle first principles simulations of atoms and molecules, but they are limited to relatively small systems due to unfavorable scaling of self-energy diagrams with respect to the basis size. We propose an efficient computation of the self-energy diagrams by using tensor-contraction operations to transform the internal summations into functions of external low-level linear algebra libraries. We discuss the achieved computational speed-up in transient electron dynamics in selected molecular systems.

1.
G.
Baym
and
L. P.
Kadanoff
,
Phys. Rev.
124
,
287
(
1961
).
2.
L. P.
Kadanoff
and
G.
Baym
,
Quantum Statistical Mechanics
(
W. A. Benjamin
,
New York
,
1962
).
3.
L. V.
Keldysh
,
Zh. Eksp. Teor. Fiz.
47
,
1515
(
1964
)
L. V.
Keldysh
[
Sov. Phys. JETP
20
,
1018
(
1965
), http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list].
4.
5.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
Cambridge
,
2013
).
6.
K.
Balzer
and
M.
Bonitz
,
Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems
(
Springer Berlin Heidelberg
,
2013
).
7.
8.
H. S.
Köhler
,
N. H.
Kwong
, and
H. A.
Yousif
,
Comput. Phys. Commun.
123
,
123
(
1999
).
9.
D.
Semkat
,
D.
Kremp
, and
M.
Bonitz
,
Phys. Rev. E
59
,
1557
(
1999
).
10.
N.-H.
Kwong
and
M.
Bonitz
,
Phys. Rev. Lett.
84
,
1768
(
2000
).
11.
W. H.
Dickhoff
and
C.
Barbieri
,
Prog. Part. Nucl. Phys.
52
,
377
(
2004
).
12.
A.
Rios
,
B.
Barker
,
M.
Buchler
, and
P.
Danielewicz
,
Ann. Phys.
326
,
1274
(
2011
).
13.
N. E.
Dahlen
and
R.
van Leeuwen
,
J. Chem. Phys.
122
,
164102
(
2005
).
14.
N. E.
Dahlen
and
R.
van Leeuwen
,
Phys. Rev. Lett.
98
,
153004
(
2007
).
15.
M.
Galperin
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Phys.: Condens. Matter
19
,
103201
(
2007
).
16.
K. S.
Thygesen
,
Phys. Rev. Lett.
100
,
166804
(
2008
).
17.
K.
Balzer
,
S.
Bauch
, and
M.
Bonitz
,
J. Phys.: Conf. Ser.
220
,
012020
(
2010
).
18.
K.
Balzer
,
S.
Bauch
, and
M.
Bonitz
,
Phys. Rev. A
81
,
022510
(
2010
).
19.
J. J.
Phillips
and
D.
Zgid
,
J. Chem. Phys.
140
,
241101
(
2014
).
20.
E.
Perfetto
,
A.-M.
Uimonen
,
R.
van Leeuwen
, and
G.
Stefanucci
,
Phys. Rev. A
92
,
033419
(
2015
).
21.
F.
Covito
,
E.
Perfetto
,
A.
Rubio
, and
G.
Stefanucci
,
Eur. Phys. J. B
91
,
216
(
2018
).
22.
M.
Hopjan
,
G.
Stefanucci
,
E.
Perfetto
, and
C.
Verdozzi
,
Phys. Rev. B
98
,
041405
(
2018
).
23.
J. K.
Freericks
,
H. R.
Krishnamurthy
, and
T.
Pruschke
,
Phys. Rev. Lett.
102
,
136401
(
2009
).
24.
B.
Moritz
,
A. F.
Kemper
,
M.
Sentef
,
T. P.
Devereaux
, and
J. K.
Freericks
,
Phys. Rev. Lett.
111
,
077401
(
2013
).
25.
A. F.
Kemper
,
M.
Sentef
,
B.
Moritz
,
C. C.
Kao
,
Z. X.
Shen
,
J. K.
Freericks
, and
T. P.
Devereaux
,
Phys. Rev. B
87
,
235139
(
2013
).
26.
M.
Sentef
,
A. F.
Kemper
,
B.
Moritz
,
J. K.
Freericks
,
Z.-X.
Shen
, and
T. P.
Devereaux
,
Phys. Rev. X
3
,
041033
(
2013
).
27.
H.
Aoki
,
N.
Tsuji
,
M.
Eckstein
,
M.
Kollar
,
T.
Oka
, and
P.
Werner
,
Rev. Mod. Phys.
86
,
779
(
2014
).
28.
A. F.
Kemper
,
M. A.
Sentef
,
B.
Moritz
,
J. K.
Freericks
, and
T. P.
Devereaux
,
Phys. Rev. B
90
,
075126
(
2014
).
29.
A. F.
Kemper
,
M. A.
Sentef
,
B.
Moritz
,
J. K.
Freericks
, and
T. P.
Devereaux
,
Phys. Rev. B
92
,
224517
(
2015
).
30.
M. A.
Sentef
,
A. F.
Kemper
,
A.
Georges
, and
C.
Kollath
,
Phys. Rev. B
93
,
144506
(
2016
).
31.
D.
Golež
,
P.
Werner
, and
M.
Eckstein
,
Phys. Rev. B
94
,
035121
(
2016
).
32.
A. F.
Kemper
,
M. A.
Sentef
,
B.
Moritz
,
T. P.
Devereaux
, and
J. K.
Freericks
,
Ann. Phys.
529
,
1600235
(
2017
).
33.
R.
Tuovinen
,
D.
Golež
,
M.
Schüler
,
P.
Werner
,
M.
Eckstein
, and
M. A.
Sentef
,
Phys. Status Solidi B
256
,
1800469
(
2018
).
34.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
35.
M. F.
Ludovico
and
L.
Arrachea
,
Physica B
407
,
3256
(
2012
).
36.
J.-S.
Wang
,
B. K.
Agarwalla
,
H.
Li
, and
J.
Thingna
,
Front. Phys.
9
,
673
(
2014
).
37.
M.
Ridley
and
R.
Tuovinen
,
Phys. Rev. B
96
,
195429
(
2017
).
38.
R.
Tuovinen
,
E.
Perfetto
,
R.
van Leeuwen
,
G.
Stefanucci
, and
M. A.
Sentef
,
New J. Phys.
21
,
103038
(
2019
).
39.
R.
Tuovinen
,
M. A.
Sentef
,
C.
Gomes da Rocha
, and
M. S.
Ferreira
,
Nanoscale
11
,
12296
(
2019
).
40.
K.
Kainulainen
,
T.
Prokopec
,
M. G.
Schmidt
, and
S.
Weinstock
,
Phys. Rev. D
66
,
043502
(
2002
).
41.
M.
Garny
and
M. M.
Müller
,
Phys. Rev. D
80
,
085011
(
2009
).
42.
M.
Garny
,
A.
Kartavtsev
, and
A.
Hohenegger
,
Ann. Phys.
328
,
26
(
2013
).
43.
P.
Lipavský
,
V.
Špička
, and
B.
Velický
,
Phys. Rev. B
34
,
6933
(
1986
).
44.
S.
Hermanns
,
K.
Balzer
, and
M.
Bonitz
,
Phys. Scr.
2012
,
014036
.
45.
V. M.
Galitskii
,
Sov. Phys. JETP
7
,
104
(
1958
), http://www.jetp.ac.ru/cgi-bin/e/index/e/7/1/p104?a=list.
47.
M. P.
von Friesen
,
C.
Verdozzi
, and
C.-O.
Almbladh
,
Phys. Rev. Lett.
103
,
176404
(
2009
).
48.
A. A.
Rusakov
and
D.
Zgid
,
J. Chem. Phys.
144
,
054106
(
2016
).
49.
E.
Perfetto
and
G.
Stefanucci
,
Phys. Status Solidi B
256
,
1800573
(
2019
).
50.
E.
Perfetto
and
G.
Stefanucci
,
J. Phys.: Condens. Matter
30
,
465901
(
2018
).
51.
G.
Baumgartner
,
A.
Auer
,
D. E.
Bernholdt
,
A.
Bibireata
,
V.
Choppella
,
D.
Cociorva
,
R. J.
Harrison
,
S.
Hirata
,
S.
Krishnamoorthy
,
S.
Krishnan
,
M.
Nooijen
,
R. M.
Pitzer
,
J.
Ramanujam
,
P.
Sadayappan
, and
A.
Sibiryakov
,
Proc. IEEE
93
,
276
(
2005
).
52.
E.
Solomonik
,
D.
Matthews
,
J. R.
Hammond
,
J. F.
Stanton
, and
J.
Demmel
,
J. Parallel Distrib. Comput.
74
,
3176
(
2014
).
53.
J.
Huang
,
D.
Matthews
, and
R.
van de Geijn
,
SIAM J. Sci. Comput.
40
,
C305
(
2018
).
54.
P.
Myöhänen
,
A.
Stan
,
G.
Stefanucci
, and
R.
van Leeuwen
,
Europhys. Lett.
84
,
67001
(
2008
).
55.
P.
Myöhänen
,
A.
Stan
,
G.
Stefanucci
, and
R.
van Leeuwen
,
Phys. Rev. B
80
,
115107
(
2009
).
56.
S.
Latini
,
E.
Perfetto
,
A.-M.
Uimonen
,
R.
van Leeuwen
, and
G.
Stefanucci
,
Phys. Rev. B
89
,
075306
(
2014
).
57.
K. J. H.
Giesbertz
,
Phys. Chem. Chem. Phys.
18
,
21024
(
2016
).
58.
K.
Balzer
, “
Solving the two-time Kadanoff-Baym equations. Application to model atoms and molecules
,” Ph.D. thesis,
Christian-Albrechts-Universität zu Kiel
,
2011
.
59.
K.
Balzer
,
N.
Schlünzen
, and
M.
Bonitz
,
Phys. Rev. B
94
,
245118
(
2016
).
60.
M. P.
von Friesen
,
C.
Verdozzi
, and
C.-O.
Almbladh
,
Europhys. Lett.
95
,
27005
(
2011
).
61.
M.
Bonitz
,
S.
Hermanns
,
K.
Kobusch
, and
K.
Balzer
,
J. Phys.: Conf. Ser.
427
,
012002
(
2013
).
62.
H.
Bruus
and
K.
Flensberg
,
Many-Body Quantum Theory in Condensed Matter Physics
(
Oxford University Press
,
New York
,
2007
).
63.
S.
Hermanns
,
N.
Schlünzen
, and
M.
Bonitz
,
Phys. Rev. B
90
,
125111
(
2014
).
64.
D.
Semkat
,
M.
Bonitz
, and
D.
Kremp
,
Contrib. Plasma Phys.
43
,
321
(
2003
).
65.
D.
Karlsson
,
R.
van Leeuwen
,
E.
Perfetto
, and
G.
Stefanucci
,
Phys. Rev. B
98
,
115148
(
2018
).
66.
M.
Hopjan
and
C.
Verdozzi
,
Eur. Phys. J.: Spec. Top.
227
,
1939
(
2019
).
67.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K. L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
68.
S.
Hermanns
, “
Nonequilibrium green functions. Selfenergy approximation techniques
,” Ph.D. thesis,
Christian-Albrechts-Universität zu Kiel
,
2016
.
69.
D.
Neuhauser
,
R.
Baer
, and
D.
Zgid
,
J. Chem. Theory Comput.
13
,
5396
(
2017
).
70.
N.
Schluenzen
,
S.
Hermanns
,
M.
Scharnke
, and
M.
Bonitz
, “
Ultrafast dynamics of strongly correlated fermions–Nonequilibrium green functions and selfenergy approximations
,”
J. Phys.: Condens. Matter
(to be published).
71.
N.
Schlünzen
and
M.
Bonitz
,
Contrib. Plasma Phys.
56
,
5
(
2016
).
72.
N.
Schlünzen
,
J.-P.
Joost
,
F.
Heidrich-Meisner
, and
M.
Bonitz
,
Phys. Rev. B
95
,
165139
(
2017
).
73.
L. J.
Holleboom
and
J. G.
Snijders
,
J. Chem. Phys.
93
,
5826
(
1990
).
74.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Ltd.
,
West Sussex, England
,
2000
).
75.
J. J.
Phillips
,
A. A.
Kananenka
, and
D.
Zgid
,
J. Chem. Phys.
142
,
194108
(
2015
).
76.
C.
Sanderson
and
R.
Curtin
,
J. Open Source Software
1
,
26
(
2016
).
77.
T. E.
Oliphant
,
A Guide to NumPy
(
Trelgol Publishing
,
USA
,
2006
).
78.
D. G. A.
Smith
and
J.
Gray
,
J. Open Source Software
3
,
753
(
2018
).
79.
B.
Kirtman
and
B.
Champagne
,
Int. Rev. Phys. Chem.
16
,
389
(
1997
).
80.
M.
van Faassen
,
P. L.
de Boeij
,
R.
van Leeuwen
,
J. A.
Berger
, and
J. G.
Snijders
,
Phys. Rev. Lett.
88
,
186401
(
2002
).
81.
M.
van Faassen
,
P. L.
de Boeij
,
R.
van Leeuwen
,
J. A.
Berger
, and
J. G.
Snijders
,
J. Chem. Phys.
118
,
1044
(
2003
).
82.
K.
Ohno
,
Theor. Chim. Acta
2
,
219
(
1964
).
83.
D.
Baeriswyl
,
D. K.
Campbell
, and
S.
Mazumdar
, in
Conjugated Conducting Polymers
, edited by
H. G.
Giess
(
Springer
,
1992
).
84.
M. A.
Marques
,
A.
Castro
,
G. F.
Bertsch
, and
A.
Rubio
,
Comput. Phys. Commun.
151
,
60
(
2003
).
85.
V.
Strassen
,
Numer. Math.
13
,
354
(
1969
).
86.
Q.
Ge
,
Y.
Gao
,
R.
Baer
,
E.
Rabani
, and
D.
Neuhauser
,
J. Phys. Chem. Lett.
5
,
185
(
2014
).
87.
D.
Neuhauser
,
Y.
Gao
,
C.
Arntsen
,
C.
Karshenas
,
E.
Rabani
, and
R.
Baer
,
Phys. Rev. Lett.
113
,
076402
(
2014
).
88.
Z.
Ruan
and
R.
Baer
,
Mol. Phys.
116
,
2490
(
2018
).
89.
W.
Dou
,
T. Y.
Takeshita
,
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, e-print arXiv:1909.06525 (
2019
).
You do not currently have access to this content.