The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J. Chem. Theory Comput. 15, 2233 (2019)], is extended to the calculation of vertical excitation energies of solvated molecular systems. Excitation energies are defined within two different solvation regimes, i.e., linear response (LR), where the response of the MM portion is adjusted to the QM transition density, and corrected-Linear Response (cLR) in which the MM response is adjusted to the relaxed QM density, thus being able to account for charge equilibration in the excited state. The model, which is specified in terms of three physical parameters (electronegativity, chemical hardness, and polarizability) is applied to vacuo-to-water solvatochromic shifts of aqueous solutions of para-nitroaniline, pyridine, and pyrimidine. The results show a good agreement with their experimental counterparts, thus highlighting the potentialities of this approach.

1.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
2.
T.
Le Bahers
,
C.
Adamo
, and
I.
Ciofini
, “
A qualitative index of spatial extent in charge-transfer excitations
,”
J. Chem. Theory Comput.
7
,
2498
2506
(
2011
).
3.
C. A.
Guido
,
P.
Cortona
,
B.
Mennucci
, and
C.
Adamo
, “
On the metric of charge transfer molecular excitations: A simple chemical descriptor
,”
J. Chem. Theory Comput.
9
,
3118
3126
(
2013
).
4.
M.
Savarese
,
C. A.
Guido
,
E.
Bremond
,
I.
Ciofini
, and
C.
Adamo
, “
Metrics for molecular electronic excitations: A comparison between orbital-and density-based descriptors
,”
J. Phys. Chem. A
121
,
7543
7549
(
2017
).
5.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
General formulation of vibronic spectroscopy in internal coordinates
,”
J. Chem. Phys.
144
,
084114
(
2016
).
6.
J.
Bloino
,
A.
Baiardi
, and
M.
Biczysko
, “
Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: An overview
,”
Int. J. Quantum Chem.
116
,
1543
1574
(
2016
).
7.
R.
Improta
,
F.
Santoro
,
V.
Barone
, and
A.
Lami
, “
Vibronic model for the quantum dynamical study of the competition between bright and charge-transfer excited states in single-strand polynucleotides: The adenine dimer case
,”
J. Phys. Chem. A
113
,
15346
15354
(
2009
).
8.
M.
Barbatti
, “
Nonadiabatic dynamics with trajectory surface hopping method
,”
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
1
,
620
633
(
2011
).
9.
M.
Barbatti
,
A. J.
Aquino
,
J. J.
Szymczak
,
D.
Nachtigallová
,
P.
Hobza
, and
H.
Lischka
, “
Relaxation mechanisms of uv-photoexcited dna and rna nucleobases
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
21453
21458
(
2010
).
10.
L.
González
,
D.
Escudero
, and
L.
Serrano-Andrés
, “
Progress and challenges in the calculation of electronic excited states
,”
ChemPhysChem
13
,
28
51
(
2012
).
11.
O.
Cannelli
,
T.
Giovannini
,
A.
Baiardi
,
B.
Carlotti
,
F.
Elisei
, and
C.
Cappelli
, “
Understanding the interplay between the solvent and nuclear rearrangements in the negative solvatochromism of a push–pull flexible quinolinium cation
,”
Phys. Chem. Chem. Phys.
19
,
32544
32555
(
2017
).
12.
B.
Carlotti
,
A.
Cesaretti
,
O.
Cannelli
,
T.
Giovannini
,
C.
Cappelli
,
C.
Bonaccorso
,
C. G.
Fortuna
,
F.
Elisei
, and
A.
Spalletti
, “
Evaluation of hyperpolarizability from the solvatochromic method: Thiophene containing push–pull cationic dyes as a case study
,”
J. Phys. Chem. C
122
,
2285
2296
(
2018
).
13.
V.
Barone
,
A.
Baiardi
,
M.
Biczysko
,
J.
Bloino
,
C.
Cappelli
, and
F.
Lipparini
, “
Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments
,”
Phys. Chem. Chem. Phys.
14
,
12404
12422
(
2012
).
14.
C.
Reichardt
, “
Solvatochromic dyes as solvent polarity indicators
,”
Chem. Rev.
94
,
2319
2358
(
1994
).
15.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
, “
Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level
,”
J. Chem. Phys.
109
,
2798
2807
(
1998
).
16.
D.
Jacquemin
,
B.
Mennucci
, and
C.
Adamo
, “
Excited-state calculations with TD-DFT: From benchmarks to simulations in complex environments
,”
Phys. Chem. Chem. Phys.
13
,
16987
16998
(
2011
).
17.
S.
Corni
,
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
, “
Electronic excitation energies of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods
,”
J. Chem. Phys.
123
,
134512
(
2005
).
18.
L.
Cupellini
,
M.
Corbella
,
B.
Mennucci
, and
C.
Curutchet
, “
Electronic energy transfer in biomacromolecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1392
(
2019
).
19.
B.
Mennucci
and
S.
Corni
, “
Multiscale modelling of photoinduced processes in composite systems
,”
Nat. Rev. Chem.
3
,
315
330
(
2019
).
20.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
21.
A.
Warshel
and
M.
Karplus
, “
Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization
,”
J. Am. Chem. Soc.
94
,
5612
5625
(
1972
).
22.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
23.
J.
Tomasi
and
M.
Persico
, “
Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent
,”
Chem. Rev.
94
,
2027
2094
(
1994
).
24.
M.
Orozco
and
F. J.
Luque
, “
Theoretical methods for the description of the solvent effect in biomolecular systems
,”
Chem. Rev.
100
,
4187
4226
(
2000
).
25.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
26.
Continuum Solvation Models in Chemical Physics
, edited by
B.
Mennucci
and
R.
Cammi
(
Wiley
,
New York
,
2007
).
27.
B.
Mennucci
, “
Continuum solvation models: What else can we learn from them?
,”
J. Phys. Chem. Lett.
1
,
1666
1674
(
2010
).
28.
B.
Mennucci
, “
Modeling environment effects on spectroscopies through QM/classical models
,”
Phys. Chem. Chem. Phys.
15
,
6583
6594
(
2013
).
29.
F.
Lipparini
and
B.
Mennucci
, “
Perspective: Polarizable continuum models for quantum-mechanical descriptions
,”
J. Chem. Phys.
144
,
160901
(
2016
).
30.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
31.
H.
Lin
and
D. G.
Truhlar
, “
QM/MM: What have we learned, where are we, and where do we go from here?
,”
Theor. Chem. Acc.
117
,
185
199
(
2007
).
32.
J. H.
Jensen
and
M. S.
Gordon
, “
An approximate formula for the intermolecular Pauli repulsion between closed shell molecules
,”
Mol. Phys.
89
,
1313
1325
(
1996
).
33.
J. H.
Jensen
and
M. S.
Gordon
, “
An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method
,”
J. Chem. Phys.
108
,
4772
4782
(
1998
).
34.
M.
Ben-Nun
and
T. J.
Martínez
, “
Direct evaluation of the Pauli repulsion energy using ‘classical’ wavefunctions in hybrid quantum/classical potential energy surfaces
,”
Chem. Phys. Lett.
290
,
289
295
(
1998
).
35.
T.
Giovannini
,
P.
Lafiosca
, and
C.
Cappelli
, “
A general route to include Pauli repulsion and quantum dispersion effects in QM/MM approaches
,”
J. Chem. Theory Comput.
13
,
4854
4870
(
2017
).
36.
C.
Curutchet
,
L.
Cupellini
,
J.
Kongsted
,
S.
Corni
,
L.
Frediani
,
A. H.
Steindal
,
C. A.
Guido
,
G.
Scalmani
, and
B.
Mennucci
, “
Density-dependent formulation of dispersion–repulsion interactions in hybrid multiscale quantum/molecular mechanics (QM/MM) models
,”
J. Chem. Theory Comput.
14
,
1671
1681
(
2018
).
37.
T.
Giovannini
,
P.
Lafiosca
,
B.
Chandramouli
,
V.
Barone
, and
C.
Cappelli
, “
Effective yet reliable computation of hyperfine coupling constants in solution by a QM/MM approach: Interplay between electrostatics and non-electrostatic effects
,”
J. Chem. Phys.
150
,
124102
(
2019
).
38.
L. J.
Nåbo
,
J. M. H.
Olsen
,
N.
Holmgaard List
,
L. M.
Solanko
,
D.
Wüstner
, and
J.
Kongsted
, “
Embedding beyond electrostatics—The role of wave function confinement
,”
J. Chem. Phys.
145
,
104102
(
2016
).
39.
P.
Reinholdt
,
J.
Kongsted
, and
J. M. H.
Olsen
, “
Polarizable density embedding: A solution to the electron spill-out problem in multiscale modeling
,”
J. Phys. Chem. Lett.
8
,
5949
5958
(
2017
).
40.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
, “
An effective fragment method for modeling solvent effects in quantum mechanical calculations
,”
J. Chem. Phys.
105
,
1968
1986
(
1996
).
41.
V.
Kairys
and
J. H.
Jensen
, “
QM/MM boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method
,”
J. Phys. Chem. A
104
,
6656
6665
(
2000
).
42.
Y.
Mao
,
O.
Demerdash
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Assessing ion–water interactions in the AMOEBA force field using energy decomposition analysis of electronic structure calculations
,”
J. Chem. Theory Comput.
12
,
5422
5437
(
2016
).
43.
D.
Loco
,
É.
Polack
,
S.
Caprasecca
,
L.
Lagardere
,
F.
Lipparini
,
J.-P.
Piquemal
, and
B.
Mennucci
, “
A QM/MM approach using the amoeba polarizable embedding: From ground state energies to electronic excitations
,”
J. Chem. Theory Comput.
12
,
3654
3661
(
2016
).
44.
D.
Loco
and
L.
Cupellini
, “
Modeling the absorption lineshape of embedded systems from molecular dynamics: A tutorial review
,”
Int. J. Quantum Chem.
119
,
e25726
(
2019
).
45.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
350
(
1981
).
46.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
, “
Electronic energy transfer in condensed phase studied by a polarizable qm/mm model
,”
J. Chem. Theory Comput.
5
,
1838
1848
(
2009
).
47.
J. M. H.
Olsen
and
J.
Kongsted
, “
Molecular properties through polarizable embedding
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2011
), Vol. 61, pp.
107
143
.
48.
A. H.
Steindal
,
K.
Ruud
,
L.
Frediani
,
K.
Aidas
, and
J.
Kongsted
, “
Excitation energies in solution: The fully polarizable QM/MM/PCM method
,”
J. Phys. Chem. B
115
,
3027
3037
(
2011
).
49.
S.
Jurinovich
,
C.
Curutchet
, and
B.
Mennucci
, “
The Fenna–Matthews–Olson protein revisited: A fully polarizable (TD) DFT/MM description
,”
ChemPhysChem
15
,
3194
3204
(
2014
).
50.
E.
Boulanger
and
W.
Thiel
, “
Solvent boundary potentials for hybrid QM/MM computations using classical drude oscillators: A fully polarizable model
,”
J. Chem. Theory Comput.
8
,
4527
4538
(
2012
).
51.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: Application to liquid water
,”
J. Chem. Phys.
101
,
6141
6156
(
1994
).
52.
S. W.
Rick
and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: The aqueous solvation of amides
,”
J. Am. Chem. Soc.
118
,
672
679
(
1996
).
53.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
54.
T.
Giovannini
,
A.
Puglisi
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Polarizable QM/MM approach with fluctuating charges and fluctuating dipoles: The QM/FQFμ model
,”
J. Chem. Theory Comput.
15
,
2233
2245
(
2019
).
55.
T.
Giovannini
,
L.
Grazioli
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Calculation of IR spectra with a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles
,”
J. Chem. Theory Comput.
15
,
5495
(
2019
).
56.
T.
Giovannini
,
M.
Ambrosetti
, and
C.
Cappelli
, “
A polarizable embedding approach to second harmonic generation (SHG) of molecular systems in aqueous solutions
,”
Theor. Chem. Acc.
137
,
74
(
2018
).
57.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
Linear response theory and electronic transition energies for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4153
4165
(
2012
).
58.
F.
Lipparini
,
C.
Cappelli
,
G.
Scalmani
,
N.
De Mitri
, and
V.
Barone
, “
Analytical first and second derivatives for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4270
4278
(
2012
).
59.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: General three-layer model, computational implementation and pilot applications
,”
J. Chem. Phys.
138
,
234108
(
2013
).
60.
T.
Giovannini
,
M.
Olszòwka
,
F.
Egidi
,
J. R.
Cheeseman
,
G.
Scalmani
, and
C.
Cappelli
, “
Polarizable embedding approach for the analytical calculation of Raman and Raman optical activity spectra of solvated systems
,”
J. Chem. Theory Comput.
13
,
4421
4435
(
2017
).
61.
T.
Giovannini
,
M.
Olszowka
, and
C.
Cappelli
, “
Effective fully polarizable QM/MM approach to model vibrational circular dichroism spectra of systems in aqueous solution
,”
J. Chem. Theory Comput.
12
,
5483
5492
(
2016
).
62.
T.
Giovannini
,
G.
Del Frate
,
P.
Lafiosca
, and
C.
Cappelli
, “
Effective computational route towards vibrational optical activity spectra of chiral molecules in aqueous solution
,”
Phys. Chem. Chem. Phys.
20
,
9181
9197
(
2018
).
63.
F.
Egidi
,
T.
Giovannini
,
G.
Del Frate
,
P. M.
Lemler
,
P. H.
Vaccaro
, and
C.
Cappelli
, “
A combined experimental and theoretical study of optical rotatory dispersion for (R)-glycidyl methyl ether in aqueous solution
,”
Phys. Chem. Chem. Phys.
21
,
3644
3655
(
2019
).
64.
A.
Puglisi
,
T.
Giovannini
,
L.
Antonov
, and
C.
Cappelli
, “
Interplay between conformational and solvent effects in UV-visible absorption spectra: Curcumin tautomers as a case study
,”
Phys. Chem. Chem. Phys.
21
,
15504
15514
(
2019
).
65.
R.
Di Remigio
,
T.
Giovannini
,
M.
Ambrosetti
,
C.
Cappelli
, and
L.
Frediani
, “
Fully polarizable QM/fluctuating charge approach to two-photon absorption of aqueous solutions
,”
J. Chem. Theory Comput.
15
,
4056
4068
(
2019
).
66.
H. A.
Stern
,
G. A.
Kaminski
,
J. L.
Banks
,
R.
Zhou
,
B.
Berne
, and
R. A.
Friesner
, “
Fluctuating charge, polarizable dipole, and combined models: Parameterization from ab initio quantum chemistry
,”
J. Phys. Chem. B
103
,
4730
4737
(
1999
).
67.
S.
Naserifar
,
D. J.
Brooks
,
W. A.
Goddard
 III
, and
V.
Cvicek
, “
Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids
,”
J. Chem. Phys.
146
,
124117
(
2017
).
68.
J. J.
Oppenheim
,
S.
Naserifar
, and
W. A.
Goddard
 III
, “
Extension of the polarizable charge equilibration model to higher oxidation states with applications to Ge, As, Se, Br, Sn, Sb, Te, I, Pb, Bi, Po, and At elements
,”
J. Phys. Chem. A
122
,
639
645
(
2018
).
69.
A.
Mayer
, “
Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes
,”
Phys. Rev. B
75
,
045407
(
2007
).
70.
L. L.
Jensen
and
L.
Jensen
, “
Atomistic electrodynamics model for optical properties of silver nanoclusters
,”
J. Phys. Chem. C
113
,
15182
15190
(
2009
).
71.
Z.
Rinkevicius
,
X.
Li
,
J. A.
Sandberg
,
K. V.
Mikkelsen
, and
H.
Ågren
, “
A hybrid density functional theory/molecular mechanics approach for linear response properties in heterogeneous environments
,”
J. Chem. Theory Comput.
10
,
989
1003
(
2014
).
72.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), pp.
155
192
.
73.
J. M.
Olsen
,
K.
Aidas
, and
J.
Kongsted
, “
Excited states in solution through polarizable embedding
,”
J. Chem. Theory Comput.
6
,
3721
3734
(
2010
).
74.
L.
Jensen
,
P. T.
Van Duijnen
, and
J. G.
Snijders
, “
A discrete solvent reaction field model for calculating molecular linear response properties in solution
,”
J. Chem. Phys.
119
,
3800
3809
(
2003
).
75.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
, “
The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories
,”
Mol. Phys.
100
,
1813
1828
(
2002
).
76.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
, “
Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory
,”
J. Chem. Phys.
124
,
124520
(
2006
).
77.
A. V.
Marenich
,
C. J.
Cramer
,
D. G.
Truhlar
,
C. A.
Guido
,
B.
Mennucci
,
G.
Scalmani
, and
M. J.
Frisch
, “
Practical computation of electronic excitation in solution: Vertical excitation model
,”
Chem. Sci.
2
,
2143
2161
(
2011
).
78.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: Solvated clusters and molecular dynamics sampling
,”
J. Phys. Chem. B
119
,
958
967
(
2015
).
79.
S.
Budzak
,
M.
Medved
,
B.
Mennucci
, and
D.
Jacquemin
, “
Unveiling solvents effect on excited-state polarizabilities with the corrected linear-response model
,”
J. Phys. Chem. A
118
,
5652
5656
(
2014
).
80.
R.
Improta
,
V.
Barone
,
G.
Scalmani
, and
M. J.
Frisch
, “
A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution
,”
J. Chem. Phys.
125
,
054103
(
2006
).
81.
M.
Caricato
, “
A corrected-linear response formalism for the calculation of electronic excitation energies of solvated molecules with the CCSD-PCM method
,”
Comput. Theor. Chem.
1040
,
99
105
(
2014
).
82.
C. A.
Guido
,
B.
Mennucci
,
G.
Scalmani
, and
D.
Jacquemin
, “
Excited state dipole moments in solution: Comparison between state-specific and linear-response TD-DFT values
,”
J. Chem. Theory Comput.
14
,
1544
1553
(
2018
).
83.
I.
Duchemin
,
C. A.
Guido
,
D.
Jacquemin
, and
X.
Blase
, “
The Bethe–Salpeter formalism with polarisable continuum embedding: Reconciling linear-response and state-specific features
,”
Chem. Sci.
9
,
4430
4443
(
2018
).
84.
H.
Schröder
and
T.
Schwabe
, “
Corrected polarizable embedding: Improving the induction contribution to perichromism for linear response theory
,”
J. Chem. Theory Comput.
14
,
833
842
(
2018
).
85.
C. A.
Guido
and
S.
Caprasecca
, “
On the description of the environment polarization response to electronic transitions
,”
Int. J. Quantum Chem.
119
,
e25711
(
2019
).
86.
C. A.
Guido
,
G.
Scalmani
,
B.
Mennucci
, and
D.
Jacquemin
, “
Excited state gradients for a state-specific continuum solvation approach: The vertical excitation model within a Lagrangian TDDFT formulation
,”
J. Chem. Phys.
146
,
204106
(
2017
).
87.
C. A.
Guido
,
D.
Jacquemin
,
C.
Adamo
, and
B.
Mennucci
, “
Electronic excitations in solution: The interplay between state specific approaches and a time-dependent density functional theory description
,”
J. Chem. Theory Comput.
11
,
5782
5790
(
2015
).
88.
Q.
Zeng
and
W.
Liang
, “
Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation
,”
J. Chem. Phys.
143
,
134104
(
2015
).
89.
R.
Sanderson
, “
An interpretation of bond lengths and a classification of bonds
,”
Science
114
,
670
672
(
1951
).
90.
T.
Giovannini
,
M.
Macchiagodena
,
M.
Ambrosetti
,
A.
Puglisi
,
P.
Lafiosca
,
G.
Lo Gerfo
,
F.
Egidi
, and
C.
Cappelli
, “
Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling
,”
Int. J. Quantum Chem.
119
,
e25684
(
2019
).
91.
M. J.
Abrahama
,
T.
Murtola
,
R.
Schulz
,
S.
Pálla
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
92.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
93.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
,
9954
9960
(
2001
).
94.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
95.
B.
Hess
,
H.
Bekker
,
H. J.
Berendsen
, and
J. G.
Fraaije
, “
Lincs: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
96.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
97.
I.
Carnimeo
,
C.
Cappelli
, and
V.
Barone
, “
Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges
,”
J. Comput. Chem.
36
,
2271
2290
(
2015
).
98.
F.
Egidi
,
T.
Giovannini
,
M.
Piccardo
,
J.
Bloino
,
C.
Cappelli
, and
V.
Barone
, “
Stereoelectronic, vibrational, and environmental contributions to polarizabilities of large molecular systems: A feasible anharmonic protocol
,”
J. Chem. Theory Comput.
10
,
2456
2464
(
2014
).
99.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision A.03,
Gaussian Inc.
,
Wallingford, CT
,
2016
.
100.
S.
Sok
,
S. Y.
Willow
,
F.
Zahariev
, and
M. S.
Gordon
, “
Solvent-induced shift of the lowest singlet π → π* charge-transfer excited state of p-nitroaniline in water: An application of the TDDFT/EFP1 method
,”
J. Phys. Chem. A
115
,
9801
9809
(
2011
).
101.
D.
Kosenkov
and
L. V.
Slipchenko
, “
Solvent effects on the electronic transitions of p-nitroaniline: A QM/EFP study
,”
J. Phys. Chem. A
115
,
392
401
(
2010
).
102.
J. J.
Eriksen
,
S. P.
Sauer
,
K. V.
Mikkelsen
,
O.
Christiansen
,
H. J. A.
Jensen
, and
J.
Kongsted
, “
Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline
,”
Mol. Phys.
111
,
1235
1248
(
2013
).
103.
K.
Sneskov
,
T.
Schwabe
,
O.
Christiansen
, and
J.
Kongsted
, “
Scrutinizing the effects of polarization in QM/MM excited state calculations
,”
Phys. Chem. Chem. Phys.
13
,
18551
18560
(
2011
).
104.
J. J.
Eriksen
,
S. P.
Sauer
,
K. V.
Mikkelsen
,
H. J. A.
Jensen
, and
J.
Kongsted
, “
On the importance of excited state dynamic response electron correlation in polarizable embedding methods
,”
J. Comput. Chem.
33
,
2012
2022
(
2012
).
105.
S.
Frutos-Puerto
,
M. A.
Aguilar
, and
I. F.
Galv’an
, “
Theoretical study of the preferential solvation effect on the solvatochromic shifts of para-nitroaniline
,”
J. Phys. Chem. B
117
,
2466
2474
(
2013
).
106.
A.
DeFusco
,
N.
Minezawa
,
L. V.
Slipchenko
,
F.
Zahariev
, and
M. S.
Gordon
, “
Modeling solvent effects on electronic excited states
,”
J. Phys. Chem. Lett.
2
,
2184
2192
(
2011
).
107.
B.
Mennucci
, “
Hydrogen bond versus polar effects: An ab initio analysis on n → π* absorption spectra and N nuclear shieldings of diazines in solution
,”
J. Am. Chem. Soc.
124
,
1506
1515
(
2002
).
108.
M.
Pagliai
,
G.
Mancini
,
I.
Carnimeo
,
N.
De Mitri
, and
V.
Barone
, “
Electronic absorption spectra of pyridine and nicotine in aqueous solution with a combined molecular dynamics and polarizable QM/MM approach
,”
J. Comput. Chem.
38
,
319
335
(
2017
).
109.
M.
Biczysko
,
J.
Bloino
,
G.
Brancato
,
I.
Cacelli
,
C.
Cappelli
,
A.
Ferretti
,
A.
Lami
,
S.
Monti
,
A.
Pedone
,
G.
Prampolini
,
C.
Puzzarini
,
F.
Santoro
,
F.
Trani
, and
G.
Villani
, “
Integrated computational approaches for spectroscopic studies of molecular systems in the gas phase and in solution: Pyrimidine as a test case
,”
Theor. Chem. Acc.
131
,
1201
(
2012
).
110.
M.
Cossi
and
V.
Barone
, “
Time-dependent density functional theory for molecules in liquid solutions
,”
J. Chem. Phys.
115
,
4708
4717
(
2001
).
111.
S.
Mason
, “
The electronic spectra of n-heteroaromatic systems. part I. The n → π transitions of monocyclic azines
,”
J. Chem. Soc.
1959
,
1240
1246
.
112.
S.
Millefiori
,
G.
Favini
,
A.
Millefiori
, and
D.
Grasso
, “
Electronic spectra and structure of nitroanilines
,”
Spectrochim. Acta A
33
,
21
27
(
1977
).
113.
Z.-L.
Cai
and
J. R.
Reimers
, “
The low-lying excited states of pyridine
,”
J. Phys. Chem. A
104
,
8389
8408
(
2000
).
114.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
,”
J. Chem. Phys.
128
,
134110
(
2008
).
115.
F. F.
da Silva
,
D.
Almeida
,
G.
Martins
,
A.
Milosavljević
,
B.
Marinković
,
S. V.
Hoffmann
,
N.
Mason
,
Y.
Nunes
,
G.
Garcia
, and
P.
Limao-Vieira
, “
The electronic states of pyrimidine studied by VUV photoabsorption and electron energy-loss spectroscopy
,”
Phys. Chem. Chem. Phys.
12
,
6717
6731
(
2010
).
116.
L.
Prabhumirashi
and
S.
Kunte
, “
Solvent effects on electronic absorption spectra of nitrochlorobenzenes, nitrophenols and nitroanilines—I. studies in nonpolar solvents
,”
Spectrochim. Acta A
42
,
435
441
(
1986
).
117.
S.
Kovalenko
,
R.
Schanz
,
V.
Farztdinov
,
H.
Hennig
, and
N.
Ernsting
, “
Femtosecond relaxation of photoexcited para-nitroaniline: Solvation, charge transfer, internal conversion and cooling
,”
Chem. Phys. Lett.
323
,
312
322
(
2000
).
118.
K. J.
de Almeida
,
K.
Coutinho
,
W. B.
De Almeida
,
W. R.
Rocha
, and
S.
Canuto
, “
A Monte Carlo–quantum mechanical study of the solvatochromism of pyrimidine in water and in carbon tetrachloride
,”
Phys. Chem. Chem. Phys.
3
,
1583
1587
(
2001
).
119.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P.
Sauer
, and
W.
Thiel
, “
Benchmarks of electronically excited states: Basis set effects on CASPT2 results
,”
J. Chem. Phys.
133
,
174318
(
2010
).
120.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
121.
T.
Giovannini
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Quantum confinement effects on solvatochromic shifts of molecular solutes
,”
J. Phys. Chem. Lett.
10
,
5823
5829
(
2019
).
122.
UV-VIS Atlas of Organic Compounds
, edited by
H.-H.
Perkampus
(
Wiley
,
Weinheim
,
1996
).
123.
D.
Loco
,
F.
Buda
,
J.
Lugtenburg
, and
B.
Mennucci
, “
The dynamic origin of color tuning in proteins revealed by a carotenoid pigment
,”
J. Phys. Chem. Lett.
9
,
2404
2410
(
2018
).
124.
F.
Egidi
,
G.
Lo Gerfo
,
M.
Macchiagodena
, and
C.
Cappelli
, “
On the nature of charge-transfer excitations for molecules in aqueous solution: A polarizable QM/MM study
,”
Theor. Chem. Acc.
137
,
82
(
2018
).
125.
F.
Maschietto
,
M.
Campetella
,
M. J.
Frisch
,
G.
Scalmani
,
C.
Adamo
, and
I.
Ciofini
, “
How are the charge transfer descriptors affected by the quality of the underpinning electronic density?
,”
J. Comput. Chem.
39
,
735
742
(
2018
).
126.
F.
Santoro
and
D.
Jacquemin
, “
Going beyond the vertical approximation with time-dependent density functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
460
486
(
2016
).

Supplementary Material

You do not currently have access to this content.