We present an approach to combining selected configuration interaction (SCI) and initiator full configuration interaction quantum Monte Carlo (i-FCIQMC). In the current i-FCIQMC scheme, the space of initiators is chosen dynamically by a population threshold. Here, we instead choose initiators as the selected space (V) from a prior SCI calculation, allowing substantially larger initiator spaces for a given walker population. While SCI+PT2 adds a perturbative correction in the first-order interacting space beyond V, the approach presented here allows a variational calculation in the same space and a perturbative correction in the second-order interacting space. The use of a fixed initiator space reintroduces population plateaus into FCIQMC, but it is shown that the plateau height is typically only a small multiple of the size of V. Thus, for a comparable fundamental memory cost to SCI+PT2, a substantially larger space can be sampled. The resulting method can be seen as a complementary approach to SCI+PT2, which is more accurate but slower for a common selected/initiator space. More generally, our results show that approaches exist to significantly improve initiator energies in i-FCIQMC while still ameliorating the fermion sign problem relative to the original FCIQMC method.

1.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
2.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M. C.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
3.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
4.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
,
Mol. Phys.
112
,
1855
(
2014
).
5.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
6.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
134
,
024112
(
2011
).
7.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
8.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
,
J. Chem. Phys.
58
,
5745
(
1973
).
9.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
10.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
11.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
Can. J. Chem.
91
,
879
(
2013
).
12.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
B.
Whaley
,
J. Chem. Phys.
145
,
044112
(
2016
).
13.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
3674
(
2016
).
14.
Y.
Garniron
,
A.
Scemama
,
P.-F.
Loos
, and
M.
Caffarel
,
J. Chem. Phys.
147
,
034101
(
2017
).
15.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
144
,
161106
(
2016
).
16.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Theory Comput.
13
,
5354
(
2017
).
17.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
(
2017
).
18.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
(
1992
).
19.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
20.
G. K.-L.
Chan
,
J. Chem. Phys.
120
,
3172
(
2004
).
21.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
,
J. Chem. Phys.
142
,
034102
(
2015
).
22.
J. J.
Eriksen
,
F.
Lipparini
, and
J.
Gauss
,
J. Phys. Chem. Lett.
8
,
4633
(
2017
).
23.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
14
,
5180
(
2018
).
24.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
15
,
4873
(
2019
).
25.
S.
Ten-no
,
J. Chem. Phys.
138
,
164126
(
2013
).
26.
Y.
Ohtsuka
and
S.
Ten-no
,
J. Chem. Phys.
143
,
214107
(
2015
).
27.
S.
Ten-no
,
J. Chem. Phys.
147
,
244107
(
2017
).
28.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2014
).
29.
N. S.
Blunt
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
146
,
244105
(
2017
).
30.
M.
Caffarel
,
T.
Applencourt
,
E.
Giner
, and
A.
Scemama
, in
Recent Progress in Quantum Monte Carlo
(
American Physical Society
,
2016
), Chap. 2, pp.
15
46
.
31.
A.
Scemama
,
Y.
Garniron
,
M.
Caffarel
, and
P.-F.
Loos
,
J. Chem. Theory Comput.
14
,
1395
(
2018
).
32.
A.
Scemama
,
A.
Benali
,
D.
Jacquemin
,
M.
Caffarel
, and
P.-F.
Loos
,
J. Chem. Phys.
149
,
034108
(
2018
).
33.
M.
Dash
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
,
J. Chem. Theory Comput.
14
,
4176
(
2018
).
34.
S. D.
Pineda Flores
and
E.
Neuscamman
,
J. Phys. Chem. A
123
,
1487
(
2019
).
35.
L.
Otis
and
E.
Neuscamman
,
Phys. Chem. Chem. Phys.
21
,
14491
(
2019
).
36.
L. R.
Schwarz
,
A.
Alavi
, and
G. H.
Booth
,
Phys. Rev. Lett.
118
,
176403
(
2017
).
37.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
,
J. Chem. Phys.
99
,
2865
(
1993
).
38.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
39.

In the NECI FCIQMC code used in this work, a determinant with amplitude Ci will perform ⌊|Ci|⌋ spawning attempts with walker weight 1 and an extra attempt with probability |Ci| − ⌊|Ci|⌋. This approach is identical within statistical errors.

40.
N. S.
Blunt
,
A. J. W.
Thom
, and
C. J. C.
Scott
,
J. Chem. Theory Comput.
15
,
3537
(
2019
).
41.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
,
J. Chem. Phys.
149
,
214110
(
2018
).
42.
Y.
Garniron
,
A.
Scemama
,
E.
Giner
,
M.
Caffarel
, and
P.-F.
Loos
,
J. Chem. Phys.
149
,
064103
(
2018
).
43.
N. S.
Blunt
,
J. Chem. Phys.
148
,
221101
(
2018
).
44.
S.
Zhang
and
M. H.
Kalos
,
J. Stat. Phys.
70
,
515
(
1993
).
45.
N. S.
Blunt
,
T. W.
Rogers
,
J. S.
Spencer
, and
W. M. C.
Foulkes
,
Phys. Rev. B
89
,
245124
(
2014
).
46.
N. S.
Blunt
,
A.
Alavi
, and
G. H.
Booth
,
Phys. Rev. Lett.
115
,
050603
(
2015
).
47.
S.
Guo
,
Z.
Li
, and
G. K.-L.
Chan
,
J. Chem. Phys.
148
,
221104
(
2018
).
48.
S.
Sharma
, e-print arXiv:1803.04341 [cond-mat.str-el] (
2018
).
49.
J. E. T.
Smith
,
B.
Mussard
,
A. A.
Holmes
, and
S.
Sharma
,
J. Chem. Theory Comput.
13
,
5468
(
2017
).
50.
A. D.
Chien
,
A. A.
Holmes
,
M.
Otten
,
C. J.
Umrigar
,
S.
Sharma
, and
P. M.
Zimmerman
,
J. Phys. Chem. A
122
,
2714
(
2018
).
51.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
142
,
184107
(
2015
).
52.
See https://sanshar.github.io/Dice for Dice documentation web page.
53.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J.
McClain
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
54.
Q.
Sun
,
J.
Yang
, and
G. K.-L.
Chan
,
Chem. Phys. Lett.
683
,
291
(
2017
).
55.
See https://github.com/ghb24/NECI_STABLE for NECI github web page.
56.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
57.
S.
Sharma
and
G. K.-L.
Chan
,
J. Chem. Phys.
136
,
124121
(
2012
).
58.
Y. G.
Smeyers
and
L.
Doreste-Suarez
,
Int. J. Quantum Chem.
7
,
687
(
1973
).
59.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
60.
C.
Daday
,
S.
Smart
,
G. H.
Booth
,
A.
Alavi
, and
C.
Filippi
,
J. Chem. Theory Comput.
8
,
4441
(
2012
).
61.
J. R.
Lane
,
J. Chem. Theory Comput.
9
,
316
(
2013
).
62.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
63.
L.-P.
Wang
and
C.
Song
,
J. Chem. Phys.
144
,
214108
(
2016
).
64.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
65.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
66.
B.
Hajgató
,
D.
Szieberth
,
P.
Geerlings
,
F.
De Proft
, and
M. S.
Deleuze
,
J. Chem. Phys.
131
,
224321
(
2009
).
67.
Y.
Kurashige
and
T.
Yanai
,
Bull. Chem. Soc. Jpn.
87
,
1071
(
2014
).
68.
S.
Guo
,
Z.
Li
, and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
14
,
4063
(
2018
).
69.
B.
Manna
,
A.
Nandi
, and
R.
Ghosh
,
J. Phys. Chem. C
122
,
21047
(
2018
).
70.
Y. J.
Bae
,
G.
Kang
,
C. D.
Malliakas
,
J. N.
Nelson
,
J.
Zhou
,
R. M.
Young
,
Y.-L.
Wu
,
R. P.
Van Duyne
,
G. C.
Schatz
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
140
,
15140
(
2018
).

Supplementary Material

You do not currently have access to this content.