Local fluctuations are important for protein binding and molecular recognition because they provide conformational states that can be trapped through a selection mechanism of binding. Thus, an accurate characterization of local fluctuations may be important for modeling the kinetic mechanism that leads to the biological activity of a protein. In this paper, we study the fluctuation dynamics of the regulatory protein ubiquitin and propose a novel theoretical approach to model its fluctuations. A coarse-grained, diffusive, mode-dependent description of fluctuations is accomplished using the Langevin Equation for Protein Dynamics (LE4PD). This equation decomposes the dynamics of a protein, simulated by molecular dynamics, into dynamical pathways that explore mode-dependent free energy surfaces. We calculate the time scales of the slow, high-amplitude fluctuations by modeling the kinetics of barrier crossing in the two-dimensional free energy surfaces using Markov state modeling. We find that the LE4PD predicts slow fluctuations in three important binding regions in ubiquitin: the C-terminal tail, the Lys11 loop, and the 50 s loop. These results suggest that the LE4PD can provide useful information on the role of fluctuations in the process of molecular recognition regulating the biological activity of ubiquitin.

1.
D. D.
Boehr
,
R.
Nussinov
, and
P. E.
Wright
,
Nat. Chem. Biol.
5
,
789
(
2009
).
2.
J.
Copperman
,
M.
Dinpajooh
,
E. R.
Beyerle
, and
M. G.
Guenza
,
Phys. Rev. Lett.
119
,
158101
(
2017
).
3.
O. F.
Lange
,
N. A.
Lakomek
,
C.
Farès
,
G. F.
Schröder
,
K. F.
Walter
,
S.
Becker
,
J.
Meiler
,
H.
Grubmüller
,
C.
Griesinger
, and
B. L.
De Groot
,
Science
320
,
1471
(
2008
).
4.
T.
Wlodarski
and
B.
Zagrovic
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19346
(
2009
).
5.
K.
Tai
,
T.
Shen
,
U.
Börjesson
,
M.
Philippopoulos
, and
J. A.
McCammon
,
Biophys. J.
81
,
715
(
2001
).
6.
I.
Bahar
and
R. L.
Jernigan
,
Biochemistry
38
,
3478
(
1999
).
7.
I.
Bahar
,
T. R.
Lezon
,
L.-W.
Yang
, and
E.
Eyal
,
Annu. Rev. Biophys.
39
,
23
(
2010
).
8.
N.
Chopra
,
T. E.
Wales
,
R. E.
Joseph
,
S. E.
Boyken
,
J. R.
Engen
,
R. L.
Jernigan
, and
A. H.
Andreotti
,
PLOS Comput. Biol.
12
,
e1004826
(
2016
).
9.
J. H.
Peters
and
B. L.
de Groot
,
PLOS Comput. Biol.
8
,
e1002704
(
2012
).
10.
J.
Monod
,
J.
Wyman
, and
J.-P.
Changeux
,
J. Mol. Biol.
12
,
88
(
1965
).
11.
B.
Ma
,
S.
Kumar
,
C.-J.
Tsai
, and
R.
Nussinov
,
Protein Eng., Des. Sel.
12
,
713
(
1999
).
12.
K. A.
Henzler-Wildman
,
V.
Thai
,
M.
Lei
,
M.
Ott
,
M.
Wolf-Watz
,
T.
Fenn
,
E.
Pozharski
,
M. A.
Wilson
,
G. A.
Petsko
,
M.
Karplus
,
C. G.
Hübner
, and
D.
Kern
,
Nature
450
,
838
(
2007
).
13.
J.
Copperman
and
M. G.
Guenza
,
J. Phys. Chem. B
119
,
9195
(
2015
).
14.
D.
Komander
,
Biochem. Soc. Trans.
37
,
937
(
2009
).
15.
M. B.
Miranda
and
A.
Sorkin
,
Mol. Interventions
7
(
3
),
157
(
2007
).
16.
J. H.
Hurley
,
S.
Lee
, and
G.
Prag
,
Biochem. J.
399
,
361
(
2006
).
17.
L.
Jin
,
A.
Williamson
,
S.
Banerjee
,
I.
Philipp
, and
M.
Rape
,
Cell
133
,
653
(
2008
).
18.
I.
Bosanac
,
I. E.
Wertz
,
B.
Pan
,
C.
Yu
,
S.
Kusam
,
C.
Lam
,
L.
Phu
,
Q.
Phung
,
B.
Maurer
,
D.
Arnott
,
D. S.
Kirkpatrick
,
V. M.
Dixit
, and
S. G.
Hymowitz
,
Mol. Cell
40
,
548
(
2010
).
19.
K.
Husnjak
and
I.
Dikic
,
Annu. Rev. Biochem.
81
,
291
(
2012
).
20.
D.
Komander
and
M.
Rape
,
Annu. Rev. Biochem.
81
,
203
(
2012
).
21.
J.
Copperman
and
M. G.
Guenza
,
J. Chem. Phys.
143
,
243131
(
2015
).
22.
J.
Copperman
and
M. G.
Guenza
,
J. Chem. Phys.
145
,
015101
(
2016
).
23.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
24.
D.
Shukla
,
Y.
Meng
,
B.
Roux
, and
V. S.
Pande
,
Nat. Commun.
5
,
3397
(
2014
).
25.
R. D.
Malmstrom
,
C. T.
Lee
,
A. T.
Van Wart
, and
R. E.
Amaro
,
J. Chem. Theory Comput.
10
,
2648
(
2014
).
26.
Y.
Meng
,
D.
Shukla
,
V. S.
Pande
, and
B.
Roux
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
9193
(
2016
).
27.
W.
Wang
,
S.
Cao
,
L.
Zhu
, and
X.
Huang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1343
(
2018
).
28.
R.
Jin
and
L.
Maibaum
,
J. Chem. Phys.
150
,
105103
(
2019
).
29.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
30.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J. H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
31.
32.
E.
Caballero-Manrique
,
J. K.
Bray
,
W. A.
Deutschman
,
F. W.
Dahlquist
, and
M. G.
Guenza
,
Biophys. J.
93
,
4128
(
2007
).
33.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
34.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
35.
K. N.
Swatek
and
D.
Komander
,
Cell Res.
26
,
399
442
(
2016
).
36.
D. L.
Nelson
and
M. M.
Cox
,
Lehninger Principles of Biochemistry
, 5th ed. (
Freeman
,
2008
).
37.
I.
Dikic
,
S.
Wakatsuki
, and
K. J.
Walters
,
Nat. Rev. Mol. Cell Biol.
10
,
659
671
(
2009
).
38.
H.
Frauenfelder
,
S. G.
Sligar
, and
P. G.
Wolynes
,
Science
254
,
1598
(
1991
).
39.
L.
Penengo
,
M.
Mapelli
,
A. G.
Murachelli
,
S.
Confalonieri
,
L.
Magri
,
A.
Musacchio
,
P. P. D.
Fiore
,
S.
Polo
, and
T. R.
Schneider
,
Cell
124
,
1183
(
2006
).
40.
S.
Lee
,
Y. C.
Tsai
,
R.
Mattera
,
W. J.
Smith
,
M. S.
Kostelansky
,
A. M.
Weissman
,
J. S.
Bonifacino
, and
J. H.
Hurley
,
Nat. Struct. Mol. Biol.
13
,
264
(
2006
).
41.
G.
Casella
,
S.
Fienberg
, and
I.
Olkin
,
Statistics and Data Analysis for Financial Engineering
(
Springer
,
2006
), Vol. 102, p.
618
.
42.
B.
Trendelkamp-Schroer
,
H.
Wu
,
F.
Paul
, and
F.
Noé
,
J. Chem. Phys.
143
,
174101
(
2015
).
43.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
New York, NY, USA
,
1986
).
44.
B.
Peters
, “
Discrete stochastic variables
,” in
Reaction Rate Theory and Rare Events Simulations
(
Elsevier
,
Amsterdam
,
2017
), Chap. 14, pp.
363
401
.
45.
N. V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
46.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
47.
F.
Noe
,
C.
Schutte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).

Supplementary Material

You do not currently have access to this content.