We introduce a simple, fast, and easy to implement unsupervised learning algorithm for detecting different local environments on a single-particle level in colloidal systems. In this algorithm, we use a vector of standard bond-orientational order parameters to describe the local environment of each particle. We then use a neural-network-based autoencoder combined with Gaussian mixture models in order to autonomously group together similar environments. We test the performance of the method on snapshots of a wide variety of colloidal systems obtained via computer simulations, ranging from simple isotropically interacting systems to binary mixtures, and even anisotropic hard cubes. Additionally, we look at a variety of common self-assembled situations such as fluid-crystal and crystal-crystal coexistences, grain boundaries, and nucleation. In all cases, we are able to identify the relevant local environments to a similar precision as “standard,” manually tuned, and system-specific, order parameters. In addition to classifying such environments, we also use the trained autoencoder in order to determine the most relevant bond orientational order parameters in the systems analyzed.

1.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
2.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
3.
M.
Hermes
,
E. C. M.
Vermolen
,
M. E.
Leunissen
,
D. L. J.
Vossen
,
P. D. J.
van Oostrum
,
M.
Dijkstra
, and
A.
van Blaaderen
,
Soft Matter
7
,
4623
(
2011
).
4.
E.
Sanz
,
C.
Valeriani
,
T.
Vissers
,
A.
Fortini
,
M. E.
Leunissen
,
A.
Van Blaaderen
,
D.
Frenkel
, and
M.
Dijkstra
,
J. Phys.: Condens. Matter
20
,
494247
(
2008
).
5.
A.
van Blaaderen
and
P.
Wiltzius
,
Science
270
,
1177
(
1995
).
6.
B.
van der Meer
,
M.
Dijkstra
, and
L.
Filion
,
Soft Matter
12
,
5630
(
2016
).
7.
T. O. E.
Skinner
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
105
,
168301
(
2010
).
8.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
9.
P. R.
Ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
10.
P.
Rein ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
11.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
12.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
).
13.
D.
Faken
and
H.
Jónsson
,
Comput. Mater. Sci.
2
,
279
(
1994
).
14.
N.
Duff
and
B.
Peters
,
J. Chem. Phys.
135
,
134101
(
2011
).
15.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
106
,
085701
(
2011
).
16.
P.
Geiger
and
C.
Dellago
,
J. Chem. Phys.
139
,
164105
(
2013
).
17.
C.
Dietz
,
T.
Kretz
, and
M. H.
Thoma
,
Phys. Rev. E
96
,
011301
(
2017
).
18.
E.
Boattini
,
M.
Ram
,
F.
Smallenburg
, and
L.
Filion
,
Mol. Phys.
116
,
3066
(
2018
).
19.
R. S.
DeFever
,
C.
Targonski
,
S. W.
Hall
,
M.
Smith
, and
S.
Sarupria
,
Chem. Sci.
10
,
7503
(
2019
).
20.
W. F.
Reinhart
,
A. W.
Long
,
M. P.
Howard
,
A. L.
Ferguson
, and
A. Z.
Panagiotopoulos
,
Soft Matter
13
,
4733
(
2017
).
21.
W. F.
Reinhart
and
A. Z.
Panagiotopoulos
,
Soft Matter
14
,
6083
(
2018
).
22.
M.
Spellings
and
S. C.
Glotzer
,
AIChE J.
64
,
2198
(
2018
).
23.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning internal representations by error propagation
,” in
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
(
MIT Press
,
Cambridge, MA, USA
,
1986
), Vol. 1, pp.
318
362
.
24.
25.
M.
Scholz
and
R.
Vigário
, in
ESANN
,
2002
.
26.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
The MIT Press
,
2016
).
27.
C. M.
Bishop
,
Neural Networks for Pattern Recognition
(
Oxford University Press, Inc.
,
New York, NY, USA
,
1995
).
28.
A.
Dempster
,
N.
Laird
, and
D.
Rubin
,
J. R. Stat. Soc.: Ser. B
39
,
1
(
1977
).
30.
J.
Baudry
,
A.
Raftery
,
G.
Celeux
,
K.
Lo
, and
R.
Gottardo
,
J. Comput. Gr. Stat.
19
,
332
(
2010
).
32.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
,
J. Chem. Phys.
136
,
234107
(
2012
).
33.
X.
Glorot
and
Y.
Bengio
, in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
2010
), pp.
249
256
.
34.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
,
Nature
323
,
533
(
1986
).
35.
I.
Sutskever
,
J.
Martens
,
G.
Dahl
, and
G.
Hinton
, in
Proceedings of the 30th International Conference on Machine Learning
(
JMLR
,
2013
), pp.
1139
1147
.
36.
W.
Chen
,
A. R.
Tan
, and
A. L.
Ferguson
,
J. Chem. Phys.
149
,
072312
(
2018
).
37.
S.
Salvador
and
P.
Chan
, in
16th IEEE International Conference on Tools with Artificial Intelligence
(
IEEE
,
2004
), p.
576
.
38.
J.
Yao
,
N.
Teng
,
H.-L.
Poh
, and
C. L.
Tan
,
J. Inf. Sci. Eng.
14
,
843
(
1998
).
39.
M.
Scardi
and
L. W.
Harding
,
Ecol. Modell.
120
,
213
(
1999
).
40.
M.
Gevrey
,
I.
Dimopoulos
, and
S.
Lek
,
Ecol. Modell.
160
,
249
(
2003
).
41.
J. D.
Olden
,
M. K.
Joy
, and
R. G.
Death
,
Ecol. Modell.
178
,
389
(
2004
).
42.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
,
J. Mach. Learn. Res.
12
,
2825
(
2011
).
43.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17886
(
2012
).
44.
T.
Dasgupta
,
G. M.
Coli
, and
M.
Dijkstra
, preprint arXiv:1906.10680 (
2019
).
45.
L.
Filion
,
R.
Ni
,
D.
Frenkel
, and
M.
Dijkstra
,
J. Chem. Phys.
134
,
134901
(
2011
).
46.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
You do not currently have access to this content.