In this work, we studied the effects of particles’ size and temperature on the photoluminescence (PL) of CH3NH3PbBr3 perovskite nanocrystals (PNCs), with the PNC size controlled by varying the surface passivating ligands. The structural and optical properties of the PNCs were investigated using UV-Vis and PL spectroscopy, revealing strong quantum confinement effects. Temperature dependent PL measurements showed the spectral blue shift of the PL peak for the small PNCs (3.1 ± 0.2 nm) with decreasing temperature from 300 K to 20 K, which is opposite to the red shift with decreasing temperature observed for large- (9.2 ± 0.5 nm) and middle-sized (5.1 ± 0.3 nm) PNCs. The PL lifetime also increased with increasing temperature for the larger PNCs, while it remained about the same for the small and middle-sized PNCs. This increase in lifetime with temperature is attributed to exciton dissociation to free carriers at higher temperatures and to the formation of polar domains in the PNCs. However, the small and middle-sized PNCs did not show such a trend, which may be due to efficient defect passivation as higher concentration of 3-aminopropyl trimethoxysilane (APTMS) was used and to the role of particle size in surface state delocalization. Cryo-X-ray diffraction showed no new peak formation or peak splitting as temperature was varied, which suggests efficient crystal phase stabilization in PNCs of all three sizes controlled by the concentration of APTMS. These results emphasize the importance of size and surface properties of PNCs in their optical properties such as PL quantum yield, PL lifetime, and crystal phase stability.

1.
H.-S.
Kim
,
C.-R.
Lee
,
J.-H.
Im
,
K.-B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S.-J.
Moon
,
R.
Humphry-Baker
,
J.-H.
Yum
,
J. E.
Moser
 et al, “
Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
,”
Sci. Rep.
2
,
591
(
2012
).
2.
W. S.
Yang
,
J. H.
Noh
,
N. J.
Jeon
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
, “
High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
,”
Science
348
(
6240
),
1234
1237
(
2015
).
3.
Q.
Dong
,
Y.
Fang
,
Y.
Shao
,
P.
Mulligan
,
J.
Qiu
,
L.
Cao
, and
J.
Huang
, “
Electron-hole diffusion lengths; 175 Μm in solution-grown CH3NH3PbI3 single crystals
,”
Science
347
(
6225
),
967
970
(
2015
).
4.
H.
Cho
,
S.-H.
Jeong
,
M.-H.
Park
,
Y.-H.
Kim
,
C.
Wolf
,
C.-L.
Lee
,
J. H.
Heo
,
A.
Sadhanala
,
N.
Myoung
,
S.
Yoo
 et al, “
Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes
,”
Science
350
(
6265
),
1222
1225
(
2015
).
5.
Z.-K.
Tan
,
R. S.
Moghaddam
,
M. L.
Lai
,
P.
Docampo
,
R.
Higler
,
F.
Deschler
,
M.
Price
,
A.
Sadhanala
,
L. M.
Pazos
,
D.
Credgington
 et al, “
Bright light-emitting diodes based on organometal halide perovskite
,”
Nat. Nanotechnol.
9
(
9
),
687
692
(
2014
).
6.
S. A.
Veldhuis
,
P. P.
Boix
,
N.
Yantara
,
M.
Li
,
T. C.
Sum
,
N.
Mathews
, and
S. G.
Mhaisalkar
, “
Perovskite materials for light-emitting diodes and lasers
,”
Adv. Mater.
28
(
32
),
6804
6834
(
2016
).
7.
G.
Xing
,
N.
Mathews
,
S. S.
Lim
,
N.
Yantara
,
X.
Liu
,
D.
Sabba
,
M.
Grätzel
,
S.
Mhaisalkar
, and
T. C.
Sum
, “
Low-temperature solution-processed wavelength-tunable perovskites for lasing
,”
Nat. Mater.
13
(
5
),
476
480
(
2014
).
8.
H.
Zhu
,
Y.
Fu
,
F.
Meng
,
X.
Wu
,
Z.
Gong
,
Q.
Ding
,
M. V.
Gustafsson
,
M. T.
Trinh
,
S.
Jin
, and
X.-Y.
Zhu
, “
Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
,”
Nat. Mater.
14
(
6
),
636
642
(
2015
).
9.
X.
Zheng
,
C.
Wu
,
S. K.
Jha
,
Z.
Li
,
K.
Zhu
, and
S.
Priya
, “
Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
,”
ACS Energy Lett.
1
(
5
),
1014
1020
(
2016
).
10.
B. T.
Diroll
,
H.
Zhou
, and
R. D.
Schaller
, “
Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals
,”
Adv. Funct. Mater.
28
(
30
),
1800945
(
2018
).
11.
S.
Yakunin
,
L.
Protesescu
,
F.
Krieg
,
M. I.
Bodnarchuk
,
G.
Nedelcu
,
M.
Humer
,
G.
De Luca
,
M.
Fiebig
,
W.
Heiss
, and
M. V.
Kovalenko
, “
Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites
,”
Nat. Commun.
6
,
8056
(
2015
).
12.
S. B.
Naghadeh
,
B.
Luo
,
Y.-C.
Pu
,
Z.
Schwartz
,
W. R.
Hollingsworth
,
S. A.
Lindley
,
A. S.
Brewer
,
A. L.
Ayzner
, and
J. Z.
Zhang
, “
Size dependence of charge carrier dynamics in organometal halide perovskite nanocrystals: Deciphering radiative versus nonradiative components
,”
J. Phys. Chem. C
123
(
7
),
4610
4619
(
2019
).
13.
S.
Sarang
,
H.
Ishihara
,
Y.-C.
Chen
,
O.
Lin
,
A.
Gopinathan
,
V. C.
Tung
, and
S.
Ghosh
, “
Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films
,”
Phys. Chem. Chem. Phys.
18
(
41
),
28428
28433
(
2016
).
14.
J.
Li
,
X.
Yuan
,
P.
Jing
,
J.
Li
,
M.
Wei
,
J.
Hua
,
J.
Zhao
, and
L.
Tian
, “
Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films
,”
RSC Adv.
6
(
82
),
78311
78316
(
2016
).
15.
S.
Sarang
,
S.
Bonabi Naghadeh
,
B.
Luo
,
P.
Kumar
,
E.
Betady
,
V.
Tung
,
M.
Scheibner
,
J. Z.
Zhang
, and
S.
Ghosh
, “
Stabilization of the cubic crystalline phase in organometal halide perovskite quantum dots via surface energy manipulation
,”
J. Phys. Chem. Lett.
8
(
21
),
5378
5384
(
2017
).
16.
B.
Luo
,
Y.-C.
Pu
,
S. A.
Lindley
,
Y.
Yang
,
L.
Lu
,
Y.
Li
,
X.
Li
, and
J. Z.
Zhang
, “
Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability
,”
Angew. Chem., Int. Ed.
55
(
31
),
8864
8868
(
2016
).
17.
K.-F.
Lin
,
H.-M.
Cheng
,
H.-C.
Hsu
,
L.-J.
Lin
, and
W.-F.
Hsieh
, “
Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method
,”
Chem. Phys. Lett.
409
(
4
),
208
211
(
2005
).
18.
T. S.
Kondratenko
,
M. S.
Smirnov
,
O. V.
Ovchinnikov
,
E. V.
Shabunya-Klyachkovskaya
,
A. S.
Matsukovich
,
A. I.
Zvyagin
, and
Y. A.
Vinokur
, “
Size-dependent optical properties of colloidal CdS quantum dots passivated by thioglycolic acid
,”
Semiconductors
52
(
9
),
1137
1144
(
2018
).
19.
L. E.
Brus
, “
Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state
,”
J. Chem. Phys.
80
(
9
),
4403
4409
(
1984
).
20.
A.
Henglein
, “
Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles
,”
Chem. Rev.
89
(
8
),
1861
1873
(
1989
).
21.
A. I.
Ekimov
,
F.
Hache
,
M. C.
Schanne-Klein
,
D.
Ricard
,
C.
Flytzanis
,
I. A.
Kudryavtsev
,
T. V.
Yazeva
,
A. V.
Rodina
, and
A. L.
Efros
, “
Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions
,”
J. Opt. Soc. Am. B
10
(
1
),
100
107
(
1993
).
22.
M. C.
Brennan
,
J. E.
Herr
,
T. S.
Nguyen-Beck
,
J.
Zinna
,
S.
Draguta
,
S.
Rouvimov
,
J.
Parkhill
, and
M.
Kuno
, “
Origin of the size-dependent Stokes shift in CsPbBr3 perovskite nanocrystals
,”
J. Am. Chem. Soc.
139
(
35
),
12201
12208
(
2017
).
23.
P. C.
Sercel
,
J. L.
Lyons
,
D.
Wickramaratne
,
R.
Vaxenburg
,
N.
Bernstein
, and
A. L.
Efros
, “
Exciton fine structure in perovskite nanocrystals
,”
Nano Lett.
19
(
6
),
4068
4077
(
2019
).
24.
M. A.
Becker
,
R.
Vaxenburg
,
G.
Nedelcu
,
P. C.
Sercel
,
A.
Shabaev
,
M. J.
Mehl
,
J. G.
Michopoulos
,
S. G.
Lambrakos
,
N.
Bernstein
,
J. L.
Lyons
 et al, “
Bright triplet excitons in caesium lead halide perovskites
,”
Nature
553
(
7687
),
189
193
(
2018
).
25.
K.-H.
Wang
,
L.-C.
Li
,
M.
Shellaiah
, and
K. W.
Sun
, “
Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals
,”
Sci. Rep.
7
(
1
),
13643
(
2017
).
26.
W.
Kong
,
Z.
Ye
,
Z.
Qi
,
B.
Zhang
,
M.
Wang
,
A.
Rahimi-Iman
, and
H.
Wu
, “
Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3
,”
Phys. Chem. Chem. Phys.
17
(
25
),
16405
16411
(
2015
).
27.
A.
Francisco-López
,
B.
Charles
,
O. J.
Weber
,
M. I.
Alonso
,
M.
Garriga
,
M.
Campoy-Quiles
,
M. T.
Weller
, and
A. R.
Goñi
, “
Equal footing of thermal expansion and electron–phonon interaction in the temperature dependence of lead halide perovskite band gaps
,”
J. Phys. Chem. Lett.
10
,
2971
2977
(
2019
).
28.
M.
Cui
,
Z.
Zhang
,
Y.
Wang
,
A.
Finch
, and
P. D.
Townsend
, “
Temperature dependence of bulk luminescence from ZnO
,”
Luminescence
33
(
4
),
654
659
(
2018
).
29.
R. K.
Misra
,
S.
Aharon
,
B.
Li
,
D.
Mogilyansky
,
I.
Visoly-Fisher
,
L.
Etgar
, and
E. A.
Katz
, “
Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight
,”
J. Phys. Chem. Lett.
6
(
3
),
326
330
(
2015
).
30.
W.-J.
Yin
,
J.-H.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.-H.
Wei
, “
Halide perovskite materials for solar cells: A theoretical review
,”
J. Mater. Chem. A
3
(
17
),
8926
8942
(
2015
).
31.
Y. P.
Varshni
, “
Temperature dependence of the energy gap in semiconductors
,”
Physica
34
(
1
),
149
154
(
1967
).
32.
Z.
Wan-Ru
,
G.-E.
Weng
,
L.
Ming-Ming
,
L.
Zeng-Cheng
,
L.
Jian-Ping
,
Z.
Jiang-Yong
, and
Z.
Bao-Ping
, “
Temperature dependence of emission properties of self-assembled InGaN quantum dots
,”
Chin. Phys. Lett.
31
,
114205
(
2014
).
33.
C.
Chen
,
X.
Hu
,
W.
Lu
,
S.
Chang
,
L.
Shi
,
L.
Li
,
H.
Zhong
, and
J.-B.
Han
, “
Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr3 single crystal
,”
J. Phys. Appl. Phys.
51
(
4
),
045105
(
2018
).
34.
P. S.
Whitfield
,
N.
Herron
,
W. E.
Guise
,
K.
Page
,
Y. Q.
Cheng
,
I.
Milas
, and
M. K.
Crawford
, “
Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide
,”
Sci. Rep.
6
(
1
),
35685
(
2016
).
35.
R.
Saran
,
A.
Heuer-Jungemann
,
A. G.
Kanaras
, and
R. J.
Curry
, “
Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals
,”
Adv. Opt. Mater.
5
(
17
),
1700231
(
2017
).
36.
R. L.
Milot
,
G. E.
Eperon
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
, “
Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films
,”
Adv. Funct. Mater.
25
(
39
),
6218
6227
(
2015
).
37.
H.-H.
Fang
,
F.
Wang
,
S.
Adjokatse
,
N.
Zhao
,
J.
Even
, and
M.
Antonietta Loi
, “
Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications
,”
Light Sci. Appl.
5
(
4
),
e16056
(
2016
).
38.
K.
Wei
,
Z.
Xu
,
R.
Chen
,
X.
Zheng
,
X.
Cheng
, and
T.
Jiang
, “
Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots
,”
Opt. Lett.
41
(
16
),
3821
3824
(
2016
).
39.
B. T.
Diroll
,
G.
Nedelcu
,
M. V.
Kovalenko
, and
R. D.
Schaller
, “
High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals
,”
Adv. Funct. Mater.
27
(
21
),
1606750
(
2017
).
40.
L. C.
Schmidt
,
A.
Pertegás
,
S.
González-Carrero
,
O.
Malinkiewicz
,
S.
Agouram
,
G.
Mínguez Espallargas
,
H. J.
Bolink
,
R. E.
Galian
, and
J.
Pérez-Prieto
, “
Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles
,”
J. Am. Chem. Soc.
136
(
3
),
850
853
(
2014
).
41.
X.
Chen
,
J.
Jiang
,
F.
Yan
,
S.
Tian
, and
K.
Li
, “
A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride
,”
RSC Adv.
4
(
17
),
8703
8710
(
2014
).
You do not currently have access to this content.