We investigate the buildup of strain in InP quantum dots with the addition of shells of the lower-lattice constant materials ZnSe and ZnS by Raman spectroscopy. Both materials induce compressive strain in the core, which increases with increasing shell volume. We observe a difference in the shell behavior between the two materials: the thickness-dependence points toward an influence of the material stiffness. ZnS has a larger Young’s modulus and requires less material to develop stress on the InP lattice at the interface, while ZnSe requires several layers to form a stress-inducing lattice at the interface. This hints at the material stiffness being an additional parameter of relevance for designing strained core/shell quantum dots.

1.
Y.
Yang
,
Y.
Zheng
,
W.
Cao
,
A.
Titov
,
J.
Hyvonen
,
J. R.
Manders
,
J.
Xue
,
P. H.
Holloway
, and
L.
Qian
, “
High-efficiency light-emitting devices based on quantum dots with tailored nanostructures
,”
Nat. Photonics
9
(
4
),
259
266
(
2015
).
2.
J. M.
Pietryga
,
Y.-S.
Park
,
J.
Lim
,
A. F.
Fidler
,
W. K.
Bae
,
S.
Brovelli
, and
V. I.
Klimov
, “
Spectroscopic and device aspects of nanocrystal quantum dots
,”
Chem. Rev.
116
(
18
),
10513
10622
(
2016
).
3.
T.
Shen
,
L.
Bian
,
B.
Li
,
K.
Zheng
,
T.
Pullerits
, and
J.
Tian
, “
A structure of CdS/CuxS quantum dots sensitized solar cells
,”
Appl. Phys. Lett.
108
(
21
),
213901
(
2016
).
4.
Z.
Yang
,
M.
Gao
,
W.
Wu
,
X.
Yang
,
X. W.
Sun
,
J.
Zhang
,
H.-C.
Wang
,
R.-S.
Liu
,
C.-Y.
Han
,
H.
Yang
, and
W.
Li
, “
Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions
,”
Mater. Today
24
,
69
93
(
2019
).
5.
D. V.
Talapin
,
J.-S.
Lee
,
M. V.
Kovalenko
, and
E. V.
Shevchenko
, “
Prospects of colloidal nanocrystals for electronic and optoelectronic applications
,”
Chem. Rev.
110
(
1
),
389
458
(
2010
).
6.
R.
Xie
,
D.
Battaglia
, and
X.
Peng
, “
Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared
,”
J. Am. Chem. Soc.
129
(
50
),
15432
15433
(
2007
).
7.
P.
Reiss
,
M.
Protière
, and
L.
Li
, “
Core/shell semiconductor nanocrystals
,”
Small
5
(
2
),
154
168
(
2009
).
8.
V.
Brunetti
,
H.
Chibli
,
R.
Fiammengo
,
A.
Galeone
,
M. A.
Malvindi
,
G.
Vecchio
,
R.
Cingolani
,
J. L.
Nadeau
, and
P. P.
Pompa
, “
InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment
,”
Nanoscale
5
(
1
),
307
317
(
2012
).
9.
S. J.
Soenen
,
B. B.
Manshian
,
T.
Aubert
,
U.
Himmelreich
,
J.
Demeester
,
S. C.
De Smedt
,
Z.
Hens
, and
K.
Braeckmans
, “
Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging
,”
Chem. Res. Toxicol.
27
(
6
),
1050
1059
(
2014
).
10.
K.
Gong
and
D. F.
Kelley
, “
A predictive model of shell morphology in CdSe/CdS core/shell quantum dots
,”
J. Chem. Phys.
141
(
19
),
194704
(
2014
).
11.
A. M.
Smith
,
A. M.
Mohs
, and
S.
Nie
, “
Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain
,”
Nat. Nanotechnol.
4
(
1
),
56
63
(
2009
).
12.
C.
Phadnis
,
K. G.
Sonawane
,
A.
Hazarika
, and
S.
Mahamuni
, “
Strain-induced hierarchy of energy levels in CdS/ZnS nanocrystals
,”
J. Phys. Chem.
119
(
42
),
24165
24173
(
2015
).
13.
V.
Kocevski
,
O.
Eriksson
,
C.
Gerard
,
D. D.
Sarma
, and
J.
Rusz
, “
Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—A first-principles study
,”
J. Chem. Phys.
143
(
16
),
164701
(
2015
).
14.
F.
Pietra
,
L.
De Trizio
,
A. W.
Hoekstra
,
N.
Renaud
,
M.
Prato
,
F. C.
Grozema
,
P. J.
Baesjou
,
R.
Koole
,
L.
Manna
, and
A. J.
Houtepen
, “
Tuning the lattice parameter of InXZnYP for highly luminescent lattice-matched core/shell quantum dots
,”
ACS Nano
10
(
4
),
4754
4762
(
2016
).
15.
M.
Rafipoor
,
D.
Dupont
,
H.
Tornatzky
,
M. D.
Tessier
,
J.
Maultzsch
,
Z.
Hens
, and
H.
Lange
, “
Strain engineering in InP/(Zn,Cd)Se core/shell quantum dots
,”
Chem. Mater.
30
(
13
),
4393
4400
(
2018
).
16.
A. V.
Baranov
,
Y. P.
Rakovich
,
J. F.
Donegan
,
T. S.
Perova
,
R. A.
Moore
,
D. V.
Talapin
,
A. L.
Rogach
,
Y.
Masumoto
, and
I.
Nabiev
, “
Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots
,”
Phys. Rev. B
68
(
16
),
165306
(
2003
).
17.
N.
Tschirner
,
H.
Lange
,
A.
Schliwa
,
A.
Biermann
,
C.
Thomsen
,
K.
Lambert
,
R.
Gomes
, and
Z.
Hens
, “
Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis
,”
Chem. Mater.
24
(
2
),
311
318
(
2012
).
18.
M. J.
Seong
,
O. I.
Mićić
,
A. J.
Nozik
,
A.
Mascarenhas
, and
H. M.
Cheong
, “
Size-dependent Raman study of InP quantum dots
,”
Appl. Phys. Lett.
82
(
2
),
185
187
(
2003
).
19.
V. M.
Dzhagan
,
M.
Ya Valakh
,
A. E.
Raevskaya
,
A. L.
Stroyuk
,
S.
Ya Kuchmiy
, and
D. R. T.
Zahn
, “
Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS
,”
Nanotechnology
18
(
28
),
285701
(
2007
).
20.
A.
Biermann
,
T.
Aubert
,
P.
Baumeister
,
E.
Drijvers
,
Z.
Hens
, and
J.
Maultzsch
, “
Interface formation during silica encapsulation of colloidal CdSe/CdS quantum dots observed by in situ Raman spectroscopy
,”
J. Chem. Phys.
146
(
13
),
134708
(
2017
).
21.
M. D.
Tessier
,
D.
Dupont
,
K.
De Nolf
,
J.
De Roo
, and
Z.
Hens
, “
Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots
,”
Chem. Mater.
27
(
13
),
4893
4898
(
2015
).
22.
M.
Dimitrievska
,
H.
Xie
,
A. J.
Jackson
,
X.
Fontané
,
M.
Espíndola-Rodríguez
,
E.
Saucedo
,
A.
Pérez-Rodríguez
,
A.
Walsh
, and
V.
Izquierdo-Roca
, “
Resonant Raman scattering of ZnSXSe1−X solid solutions: The role of S and Se electronic states
,”
Phys. Chem. Chem. Phys.
18
(
11
),
7632
7640
(
2016
).
23.
M.
Shakir
,
S. K.
Kushwaha
,
K. K.
Maurya
,
G.
Bhagavannarayana
, and
M. A.
Wahab
, “
Characterization of ZnSe nanoparticles synthesized by microwave heating process
,”
Solid State Commun.
149
(
45
),
2047
2049
(
2009
).
24.
R. K.
Ram
,
S. S.
Kushwaha
, and
A.
Shukla
, “
Phonon assignments in II-VI and III-V semiconductor compounds having zincblende-type structure
,”
Phys. Status Solidi (b)
154
(
2
),
553
564
(
1989
).
25.
Light Scattering in Solids IV
, edited by
M.
Cardona
and
G.
Güntherodt
(
Springer Berlin Heidelberg
,
1984
).
26.
G.
Scamarcio
,
M.
Lugará
, and
D.
Manno
, “
Size-dependent lattice contraction in CdS1−xSex nanocrystals embedded in glass observed by Raman scattering
,”
Phys. Rev. B
45
(
23
),
13792
13795
(
1992
).
27.
R.
Trommer
,
H.
Müller
,
M.
Cardona
, and
P.
Vogl
, “
Dependence of the phonon spectrum of InP on hydrostatic pressure
,”
Phys. Rev. B
21
(
10
),
4869
4878
(
1980
).
28.
R. M.
Feenstra
and
S. W.
Hla
.
2.3.12 InP, Indium Phosphide
(
Springer Berlin Heidelberg
,
2015
).
29.
V. M.
Dzhagan
,
M. Y.
Valakh
,
A. G.
Milekhin
,
N. A.
Yeryukov
,
D. R. T.
Zahn
,
E.
Cassette
,
T.
Pons
, and
B.
Dubertret
, “
Raman- and IR-active phonons in CdSe/CdS core/shell nanocrystals in the presence of interface alloying and strain
,”
J. Phys. Chem.
117
(
35
),
18225
18233
(
2013
).
30.
L.
Lu
,
X.-L.
Xu
,
W.-T.
Liang
, and
H.-F.
Lu
, “
Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness
,”
J. Phys.: Condens. Matter
19
(
40
),
406221
(
2007
).
31.
V. M.
Dzhagan
,
Y. M.
Azhniuk
,
A. G.
Milekhin
, and
D. R. T.
Zahn
, “
Vibrational spectroscopy of compound semiconductor nanocrystals
,”
J. Phys. D: Appl. Phys.
51
(
50
),
503001
(
2018
).
32.
Zinc Sulfide (ZnS) Third-Order Elastic Constants, Young’s Modulus, Poisson’s Ratio, Grueneisen Parameters
, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1999
).
33.
Indium Phosphide (InP) Lattice Parameters, Thermal Expansion
, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2001
).
34.
B.
Budiansky
, “
On the elastic moduli of some heterogeneous materials
,”
J. Mech. Phys. Solids
13
(
4
),
223
227
(
1965
).
35.
Z.-Q.
Wang
,
Y.-P.
Zhao
, and
Z.-P.
Huang
, “
The effects of surface tension on the elastic properties of nano structures
,”
Int. J. Eng. Sci.
48
(
2
),
140
150
(
2010
).
36.
U.
Rössler
,
ZnS: Lattice Parameters
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2013
).
37.
D.
Strauch
,
CdSe: Bulk Modulus, Compressibility: Datasheet from Landolt-Börnstein - Group III Condensed Matter
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
).

Supplementary Material

You do not currently have access to this content.