Equations are derived for the time evolution of time-dependent vibrational coupled cluster (TDVCC) wave functions covering both the TDVCC ket state and the associated so-called Λ bra state. The equations are implemented in the special case of both the Hamiltonian and the cluster operator containing at most two-mode coupling terms. The nontrivial behavior of the evolution of norm, energy, and expectation values due to the nonunitary time-evolution of the nonvariational TDVCC theory is analyzed theoretically and confirmed in numerical experiments that also include time-dependent Hamiltonians. In the spirit of time-independent size-consistency analysis, the separability of both the coupled cluster and Λ states for noninteracting systems is studied. While the coupled cluster state clearly has the correct behavior, the behavior of the Λ state is more intricate, and the consequence for different properties is shown theoretically and numerically. Overall, the numerical experiments show that TDVCC in incomplete expansions gives higher accuracy than a standard linear variational wave function parameterization with the same number of independent parameters, while equivalent results are obtained for complete expansions. The efficiency of the methodology is illustrated in computations on polycyclic aromatic hydrocarbons with up to 156 modes.

1.
N.
Makri
,
Annu. Rev. Phys. Chem.
50
(
1
),
167
(
1999
).
2.
M.
Beck
,
A.
Jackle
,
G.
Worth
, and
H.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
3.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
(
1
),
73
(
1990
).
4.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
5.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
6.
H.
Wang
,
J. Phys. Chem. A
119
(
29
),
7951
(
2015
).
7.
I.
Burghardt
,
M.
Nest
, and
G. A.
Worth
,
J. Chem. Phys.
119
(
11
),
5364
(
2003
).
8.
M.
Bonfanti
,
G. F.
Tantardini
,
K. H.
Hughes
,
R.
Martinazzo
, and
I.
Burghardt
,
J. Phys. Chem. A
116
(
46
),
11406
(
2012
).
9.
B. F. E.
Curchod
and
T. J.
Martínez
,
Chem. Rev.
118
(
7
),
3305
(
2018
).
10.
I.
Burghardt
,
H.
Meyer
, and
L.
Cederbaum
,
J. Chem. Phys.
111
,
2927
(
1999
).
11.
G.
Richings
,
I.
Polyak
,
K.
Spinlove
,
G.
Worth
,
I.
Burghardt
, and
B.
Lasorne
,
Int. Rev. Phys. Chem.
34
(
2
),
269
(
2015
).
12.
J. A.
Green
,
A.
Grigolo
,
M.
Ronto
, and
D. V.
Shalashilin
,
J. Chem. Phys.
144
(
2
),
024111
(
2016
).
13.
O.
Christiansen
,
J. Chem. Phys.
120
,
2140
(
2004
).
14.
N. K.
Madsen
,
M. B.
Hansen
,
A.
Zoccante
,
K.
Monrad
,
M. B.
Hansen
, and
O.
Christiansen
,
J. Chem. Phys.
149
(
13
),
134110
(
2018
).
15.
F.
Coester
,
Nucl. Phys.
7
,
421
(
1958
).
16.
F.
Coester
and
H.
Kümmel
,
Nucl. Phys.
17
,
477
(
1960
).
17.
J.
Cizek
,
J. Chem. Phys.
45
,
4256
(
1966
).
18.
J.
Paldus
,
I.
Shavitt
, and
J.
Cizek
,
Phys. Rev. A
5
,
50
(
1972
).
19.
G.
Hagen
,
T.
Papenbrock
,
M.
Hjorth-Jensen
, and
D. J.
Dean
,
Rep. Prog. Phys.
77
(
9
),
096302
(
2014
).
20.
J. J.
Eriksen
,
P.
Baudin
,
P.
Ettenhuber
,
K.
Kristensen
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
11
(
7
),
2984
(
2015
).
21.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Phys.
145
(
23
),
234107
(
2016
).
22.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
(
1
),
011101
(
2018
).
23.
A.
Köhn
,
M.
Hanauer
,
L. A.
Mück
,
T.-C.
Jagau
, and
J.
Gauss
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
(
2
),
176
(
2013
).
24.
O.
Christiansen
,
J. Chem. Phys.
120
(
5
),
2149
(
2004
).
25.
P.
Seidler
and
O.
Christiansen
,
J. Chem. Phys.
131
(
23
),
234109
(
2009
).
26.
U. B.
Kaulfuss
and
M.
Altenborn
,
Phys. Rev. D
33
,
3658
(
1985
).
27.
R. F.
Bishop
and
M.
Flynn
,
Phys. Rev. A
38
,
2211
(
1988
).
28.
R. F.
Bishop
,
M. C.
Bosca
, and
M. F.
Flynn
,
Phys. Rev. A
40
,
3484
(
1989
).
29.
V.
Nagalakshmi
,
V.
Lakshminarayana
,
G.
Sumithra
, and
M. D.
Prasad
,
Chem. Phys. Letters.
217
,
279
(
1994
).
30.
M. D.
Prasad
,
Int. J. Mol. Sci.
3
,
447
(
2002
).
31.
S.
Banik
,
S.
Pal
, and
M. D.
Prasad
,
J. Chem. Phys.
129
(
13
),
134111
(
2008
).
32.
M. D.
Prasad
,
J. Chem. Phys.
88
(
11
),
7005
(
1988
).
33.
G.
Madhavi Sastry
and
M.
Durga Prasad
,
Chem. Phys. Lett.
228
(
1
),
213
(
1994
).
34.
G. S.
Latha
and
M. D.
Prasad
,
J. Chem. Phys.
105
(
8
),
2972
(
1996
).
35.
J. A.
Faucheaux
and
S.
Hirata
,
J. Chem. Phys.
143
(
13
),
134105
(
2015
).
36.
K.
Schönhammer
and
O.
Gunnarsson
,
Phys. Rev. B
18
(
12
),
6606
(
1978
).
37.
P.
Hoodbhoy
and
J. W.
Negele
,
Phys. Rev. C.
18
(
5
),
2380
(
1978
).
38.
P.
Hoodbhoy
and
J. W.
Negele
,
Phys. Rev. C.
19
(
5
),
1971
(
1979
).
39.
J.
Arponen
,
Ann. Phys.
151
,
311
(
1983
).
40.
C.
Huber
and
T.
Klamroth
,
J. Chem. Phys.
134
(
5
),
054113
(
2011
).
41.
S.
Kvaal
,
J. Chem. Phys.
136
(
19
),
194109
(
2012
).
42.
D. A.
Pigg
,
G.
Hagen
,
H.
Nam
, and
T.
Papenbrock
,
Phys. Rev. C.
86
(
1
),
014308
(
2012
).
43.
D. R.
Nascimento
and
A. E.
DePrince
,
J. Chem. Theory Comput.
12
(
12
),
5834
(
2016
).
44.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
,
J. Chem. Phys.
148
(
5
),
051101
(
2018
).
45.
A. F.
White
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
14
(
11
),
5690
(
2018
).
46.
T. B.
Pedersen
and
S.
Kvaal
,
J. Chem. Phys.
150
(
14
),
144106
(
2019
).
47.
H. J.
Monkhorst
,
Int. J. Quantum Chem.
12
,
421
(
1977
).
48.
E.
Dalgaard
and
H. J.
Monkhorst
,
Phys. Rev. A
28
,
1217
(
1983
).
49.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
50.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
,
Int. J. Quantum Chem.
68
,
1
(
1998
).
51.
C. D.
Batista
and
G.
Ortiz
,
Adv. Phys.
53
(
1
),
1
(
2004
).
52.
P.
Langhoff
,
S.
Epstein
, and
M.
Karplus
,
Rev. Mod. Phys.
44
(
3
),
602
(
1972
).
53.
H.
Feldmeier
and
J.
Schnack
,
Rev. Mod. Phys.
72
,
655
(
2000
).
54.
K.
Sasagane
,
F.
Aiga
, and
R.
Itoh
,
J. Chem. Phys.
99
,
3738
(
1993
).
55.
P.
Froelich
and
P.
Löwdin
,
J. Math. Phys.
24
(
1
),
88
(
1983
).
56.
P.
Kramer
and
M.
Saraceno
, “
Geometry of the time-dependent variational principle in quantum mechanics
,” in
Geometry of the Time-Dependent Variational Principle in Quantum Mechanics
(
Springer
,
1981
), Vol. 140.
57.
O.
Christiansen
and
K. V.
Mikkelsen
,
J. Chem. Phys.
110
,
1365
(
1999
).
58.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
(
3
),
1752
(
1989
).
59.
D.
Tannor
,
Introduction to Quantum Dynamics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito, CA
,
2007
).
60.
C. R.
Johnson
,
Am. Math. Mon.
77
(
3
),
259
(
1970
).
61.
O.
Christiansen
,
D.
Artiukhin
,
I. H.
Godtliebsen
,
E. M.
Gras
,
W.
Győrffy
,
M. B.
Hansen
,
M. B.
Hansen
,
E. L.
Klinting
,
J.
Kongsted
,
C.
König
,
D.
Madsen
,
N. K.
Madsen
,
K.
Monrad
,
G.
Schmitz
,
P.
Seidler
,
K.
Sneskov
,
M.
Sparta
,
B.
Thomsen
,
D.
Toffoli
, and
A.
Zoccante
, Midascpp, https://gitlab.com/midascpp/midascpp.
62.
P.
Seidler
,
M. B.
Hansen
, and
O.
Christiansen
,
J. Chem. Phys.
128
,
154113
(
2008
).
63.
A.
Zoccante
,
P.
Seidler
, and
O.
Christiansen
,
J. Chem. Phys.
134
,
154101
(
2011
).
64.
E.
Hairer
,
G.
Wanner
, and
S. P.
Nørsett
,
Solving Ordinary Differential Equations I: Nonstiff Problems
(
Springer
,
1993
).
65.
G.
Schmitz
,
D. G.
Artiukhin
, and
O.
Christiansen
,
J. Chem. Phys.
150
(
13
),
131102
(
2019
).
66.
M. B.
Hansen
,
O.
Christiansen
, and
D.
Toffoli
,
J. Chem. Phys.
128
,
174106
(
2008
).
67.
N. K.
Madsen
,
I. H.
Godtliebsen
, and
O.
Christiansen
,
J. Chem. Phys.
146
(
13
),
134110
(
2017
).
68.
P.
Seidler
,
M.
Sparta
, and
O.
Christiansen
,
J. Chem. Phys.
134
,
054119
(
2011
).

Supplementary Material

You do not currently have access to this content.