This work deals with the variational determination of the two-particle reduced density matrix (2-RDM) and the energy corresponding to the ground state of N-particle systems within the doubly occupied configuration interaction (DOCI) space. Here, we impose for the first time up to four-particle N-representability constraint conditions in the variational determination of the 2-RDM matrix elements using the standard semidefinite programming algorithms. The energies and 2-RDMs obtained from this treatment and the corresponding computational costs are compared with those arisen from previously reported less restrictive variational methods [D. R. Alcoba et al., J. Chem. Phys. 149, 194105 (2018)] as well as with the exact DOCI values. We apply the different approximations to the one-dimensional XXZ model of quantum magnetism, which has a rich phase diagram with one critical phase and constitutes a stringent test for the method. The numerical results show the usefulness of our treatment to achieve a high degree of accuracy.

1.
A. J.
Coleman
and
V. I.
Yukalov
,
Reduced Density Matrices: Coulson’s Challenge
, Lecture Notes in Chemistry (
Springer-Verlag
,
New York
,
2000
), p.
282
.
2.
Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules
, Advances in Chemical Physics Vol. 134, edited by
D. A.
Mazziotti
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2007
), pp.
21
59
.
3.
W.
Kohn
, in
Nobel Lectures in Chemistry
, edited by
I.
Grethe
(
World Scientific
,
Singapore
,
2003
), pp.
213
237
.
4.
F.
Colmenero
and
C.
Valdemoro
,
Phys. Rev. A
47
,
979
(
1993
).
5.
H.
Nakatsuji
and
K.
Yasuda
,
Phys. Rev. Lett.
76
,
1039
(
1996
).
6.
D. A.
Mazziotti
,
Phys. Rev. A
57
,
4219
(
1998
).
7.
C.
Valdemoro
,
L. M.
Tel
,
E.
Pérez-Romero
, and
A.
Torre
,
J. Mol. Struct.: THEOCHEM
537
,
1
(
2001
).
8.
M.
Nakata
,
H.
Nakatsuji
,
M.
Ehara
,
M.
Fukuda
,
K.
Nakata
, and
K.
Fujisawa
,
J. Chem. Phys.
114
,
8282
(
2001
).
9.
D. A.
Mazziotti
,
Phys. Rev. Lett.
93
,
213001
(
2004
).
10.
D. A.
Mazziotti
,
Phys. Rev. Lett.
97
,
143002
(
2006
).
11.
C.
Valdemoro
,
L. M.
Tel
,
D. R.
Alcoba
, and
E.
Pérez-Romero
,
Theor. Chem. Acc.
118
,
503
(
2007
).
12.
D. R.
Alcoba
,
C.
Valdemoro
,
L. M.
Tel
, and
E.
Pérez-Romero
,
Int. J. Quantum Chem.
109
,
3178
(
2009
).
13.
C.
Garrod
and
J. K.
Percus
,
J. Math. Phys.
5
,
1756
(
1964
).
14.
H.
Kummer
,
J. Math. Phys.
8
,
2063
(
1967
).
15.
A. J.
Coleman
,
J. Math. Phys.
13
,
214
(
1972
).
16.
D. A.
Mazziotti
,
Phys. Rev. Lett.
108
,
263002
(
2012
).
17.
P.
Ring
and
P.
Schuck
,
The Nuclear Many-Body Problem
(
Springer-Verlag
,
1980
).
18.
D. S.
Koltun
and
J. M.
Eisenberg
,
Quantum Mechanics of Many Degrees of Freedom
(
Wiley
,
1988
).
19.
T.
Perez
and
P.
Cassam-Chenaï
,
J. Math. Chem.
56
,
1428
(
2018
).
20.
L.
Bytautas
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
,
J. K.
Ellis
, and
G. E.
Scuseria
,
J. Chem. Phys.
135
,
044119
(
2011
).
21.
L.
Bytautas
and
J.
Dukelsky
,
Comput. Theor. Chem.
1141
,
74
(
2018
).
22.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
,
O. B.
Oña
,
E. M.
Honoré
,
W.
Poelmans
,
D.
Van Neck
,
P.
Bultinck
, and
S.
De Baerdemacker
,
J. Chem. Phys.
148
,
024105
(
2018
).
23.
W.
Poelmans
,
M.
Van Raemdonck
,
B.
Verstichel
,
S.
De Baerdemacker
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
,
D. R.
Alcoba
,
P.
Bultinck
, and
D.
Van Neck
,
J. Chem. Theory Comput.
11
,
4064
(
2015
).
24.
M.
Van Raemdonck
,
D. R.
Alcoba
,
W.
Poelmans
,
S.
De Baerdemacker
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
,
D.
Van Neck
, and
P.
Bultinck
,
J. Chem. Phys.
143
,
104106
(
2015
).
25.
A.
Rubio-García
,
D. R.
Alcoba
,
P.
Capuzzi
, and
J.
Dukelsky
,
J. Chem. Theory Comput.
14
,
4183
(
2018
).
26.
D. R.
Alcoba
,
P.
Capuzzi
,
A.
Rubio-García
,
J.
Dukelsky
,
G. E.
Massaccesi
,
O. B.
Oña
,
A.
Torre
, and
L.
Lain
,
J. Chem. Phys.
149
,
194105
(
2018
).
27.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
,
O. B.
Oña
, and
E.
Ríos
,
J. Chem. Phys.
150
,
164106
(
2019
).
28.
M.
Yamashita
,
K.
Fujisawa
,
K.
Nakata
,
M.
Nakata
,
M.
Fukuda
,
K.
Kobayashi
, and
K.
Goto
, “
A high-performance software package for semidefinite programs: SDPA 7
,” Technical Report No. B-460 (
Department of Mathematical and Computing Science, Tokyo Institute of Technology
,
2010
).
29.
M.
Yamashita
,
K.
Fujisawa
,
M.
Fukuda
,
K.
Kobayashi
,
K.
Nakata
, and
M.
Maho Nakata
, in
Semidefinite, Cone Polynomial Optimization
, edited by
M. F.
Anjos
and
J. B.
Lasserre
(
Springer
,
New York
,
2011
), p.
687
.
30.
P.
Jorgensen
,
Second Quantization-Based Methods in Quantum Chemistry
(
Academic Press
,
1981
).
31.
K.
Husimi
,
Proc. Phys.-Math. Soc. Jpn.
22
,
264
(
1940
).
32.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
33.
C. A.
Coulson
,
Rev. Mod. Phys.
32
,
170
(
1960
).
34.
A. J.
Coleman
,
Rev. Mod. Phys.
35
,
668
(
1963
).
35.
D. A.
Mazziotti
,
Phys. Rev. A
65
,
062511
(
2002
).
36.
D. A.
Mazziotti
and
R. M.
Erdahl
,
Phys. Rev. A
63
,
042113
(
2001
).
37.
F.
Weinhold
and
E. B.
Wilson
,
J. Chem. Phys.
46
,
2752
(
1967
).
38.
F.
Weinhold
and
E. B.
Wilson
,
J. Chem. Phys.
47
,
2298
(
1967
).
39.
W.
Poelmans
, “
Variational determination of the two-particle density matrix: The case of doubly-occupied space
,” Ph.D. thesis,
Ghent University
,
2015
.
40.
N. C.
Rubin
and
D. A.
Mazziotti
,
J. Phys. Chem. C
119
,
14706
(
2015
).
41.
K.
Head-Marsden
and
D. A.
Mazziotti
,
J. Chem. Phys.
147
,
084101
(
2017
).
42.
I.
Talmi
,
Simple Models of Complex Nuclei
(
Harwood Academic Publishers
,
Chur, Switzerland; Langhorne, PA, USA
,
1993
).
43.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
O. B.
Oña
,
G. E.
Massaccesi
, and
P.
Capuzzi
, in
Advances in Quantum Chemistry
(
Academic Press
,
2018
), Vol. 76, pp.
315
332
.
44.
A.
Auerbach
,
Interacting Electrons and Quantum Magnetism
, Graduate Texts in Contemporary Physics (
Springer New York
,
New York, NY
,
1994
).
45.
C. N.
Yang
and
C. P.
Yang
,
Phys. Rev.
147
,
303
(
1966
).
46.
P.
Jordan
and
E.
Wigner
,
Z. Phys.
47
,
631
(
1928
).
47.
R. M.
Erdahl
and
M.
Rosina
, in
Reduced Density Operators with Applications to Physical and Chemical Systems-II
, Queen’s Papers in Pure and Applied Mathematics Vol. 40, edited by
R. M.
Erdahl
(
Queens University
,
Kingston, Ontario
,
1974
), p.
36
.
48.
Y.
Nesterov
and
A.
Nemirovskii
,
Interior-Point Polynomial Algorithms in Convex Programming
(
Society for Industrial and Applied Mathematics
,
1994
).
49.
L.
Vandenberghe
and
S.
Boyd
,
SIAM Rev.
38
,
49
(
1996
).
50.
S.
Wright
,
Handbook of Semidefinite Programming
, International Series in Operations Research and Management Science Vol. 27, 1st ed., edited by
H.
Wolkowicz
,
R.
Saigal
, and
L.
Vandenberghe
(
Springer US
,
2000
).
51.
S.
Wright
,
Primal-Dual Interior-Point Methods
(
Society for Industrial and Applied Mathematics
,
1997
).
52.
R. M.
Erdahl
and
B.
Jin
,
J. Mol. Struct.: THEOCHEM
527
,
207
(
2000
).
53.
T.
Barthel
and
R.
Hübener
,
Phys. Rev. Lett.
108
,
200404
(
2012
).
You do not currently have access to this content.