We analyze the changes in the interfacial free energy between a spherical solid cluster and a fluid due to the change of the radius of the solid. Interfacial free energies from nucleation studies using the seeding technique for four different systems, being hard spheres, Lennard-Jones, and two models of water (mW and TIP4P/ICE), were plotted as a function of the inverse of the radius of the solid cluster. In all cases, the interfacial free energy was a linear function of the inverse of the radius of the solid cluster and this is consistent with Tolman’s equation. This linear behavior is shown not only in isotherms but also along isobars. The effect of curvature on the interfacial free energy is more pronounced in water, followed by hard spheres, and smaller for Lennard-Jones particles. We show that it is possible to estimate nucleation rates of Lennard-Jones particles at different pressures by using information from simple NpT simulations and taking into account the variation of the interfacial free energy with the radius of the solid cluster. Neglecting the effects of the radius on the interfacial free energy (capillarity approximation) leads to incorrect values of the nucleation rate. For the Lennard-Jones system, the homogeneous nucleation curve is not parallel to the melting curve as was found for water in previous work. This is due to the increase in the interfacial free energy along the coexistence curve as the pressure increases. This work presents a simple and relatively straightforward way to approximately estimate nucleation rates.

1.
K. F.
Kelton
and
A. L.
Greer
,
Nucleation in Condensed Matter
(
Pergamon, Elsevier
,
Oxford
,
2010
).
2.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Oxford University Press
,
1982
).
3.
B.
Cheng
,
G. A.
Tribello
, and
M.
Ceriotti
, “
Solid-liquid interfacial free energy out of equilibrium
,”
Phys. Rev. B
92
,
180102
(
2015
).
4.
D.
Sopu
,
J.
Rogal
, and
R.
Drautz
, “
Thermodynamic and kinetic solid-liquid interface properties from transition path sampling
,”
J. Chem. Phys.
145
,
244703
(
2016
).
5.
W.
Cantrell
and
A.
Heymsfield
, “
Production of ice in tropospheric clouds: A review
,”
Bull. Am. Meteorol. Soc.
86
,
795
808
(
2005
).
6.
G.
Petzold
and
J. M.
Aguilera
, “
Ice morphology: Fundamentals and technological applications in foods
,”
Food Biophys.
4
,
378
396
(
2009
).
7.
A.
Michaelides
and
K.
Morgenstern
, “
Ice nanoclusters at hydrophobic metal surfaces
,”
Nat. Mater.
6
,
597
(
2007
).
8.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Simulating rare events in equilibrium or nonequilibrium stochastic systems
,”
J. Chem. Phys.
124
,
024102
(
2006
).
9.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
10.
M.
Volmer
and
A.
Weber
, “
Keimbildung in ubersattigten gebilden
,”
Z. Phys. Chem.
119U
,
277
(
1926
).
11.
R.
Becker
and
W.
Doring
,
Ann. Phys.
416
,
719
752
(
1935
).
12.
S.
Jungblut
and
C.
Dellago
, “
Pathways to self-organization: Crystallization via nucleation and growth
,”
Eur. Phys. J. E
39
,
77
(
2016
).
13.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
(
2001
).
14.
S.
Auer
and
D.
Frenkel
, “
Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach
,”
Annu. Rev. Phys. Chem.
55
,
333
(
2004
).
15.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
, “
Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques
,”
J. Chem. Phys.
133
,
244115
(
2010
).
16.
L.
Filion
,
R.
Ni
,
D.
Frenkel
, and
M.
Dijkstra
, “
Simulation of nucleation in almost hard-sphere colloids: The discrepancy between experiment and simulation persists
,”
J. Chem. Phys.
134
,
134901
(
2011
).
17.
S.
Prestipino
, “
The barrier to ice nucleation in monatomic water
,”
J. Chem. Phys.
148
,
124505
(
2018
).
18.
A.
Reinhardt
and
J. P. K.
Doye
, “
Free energy landscapes for homogeneous nucleation of ice for a monatomic water model
,”
J. Chem. Phys.
136
,
054501
(
2012
).
19.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
20.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
21.
H.
Niu
,
Y. I.
Yang
, and
M.
Parrinello
, “
Temperature dependence of homogeneous nucleation in ice
,”
Phys. Rev. Lett.
122
,
245501
(
2019
).
22.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
23.
X.-M.
Bai
and
M.
Li
, “
Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach
,”
J. Chem. Phys.
124
,
124707
(
2006
).
24.
R. G.
Pereyra
,
I.
Szleifer
, and
M. A.
Carignano
, “
Temperature dependence of ice critical nucleus size
,”
J. Chem. Phys.
135
,
034508
(
2011
).
25.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
,
19544
19547
(
2012
).
26.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
27.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods
,”
J. Chem. Phys.
142
,
194709
(
2015
).
28.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
,
034501
(
2016
).
29.
Y.
Sun
,
H.
Song
,
F.
Zhang
,
L.
Yang
,
Z.
Ye
,
M. I.
Mendelev
,
C.
Wang
, and
K.
Ho
, “
Overcoming the time limitation in molecular dynamics simulation of crystal nucleation: A persistent-embryo approach
,”
Phys. Rev. Lett.
120
,
085703
(
2018
).
30.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
,
Oxford
,
2000
).
31.
N. E.
Zimmermann
,
B.
Vorselaars
,
J. R.
Espinosa
,
D.
Quigley
,
W. R.
Smith
,
E.
Sanz
,
C.
Vega
, and
B.
Peters
, “
Nacl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates
,”
J. Chem. Phys.
148
,
222838
(
2018
).
32.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
33.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
Homogeneous ice nucleation evaluated for several water models
,”
J. Chem. Phys.
141
,
18C529
(
2014
).
34.
A.
Zaragoza
,
M. M.
Conde
,
J. R.
Espinosa
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Competition between ices Ih and Ic in homogeneous water freezing
,”
J. Chem. Phys.
143
,
134504
(
2015
).
35.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
36.
A.
Tröster
,
M.
Oettel
,
B.
Block
,
P.
Virnau
, and
K.
Binder
, “
Numerical approaches to determine the interface tension of curved interfaces from free energy calculations
,”
J. Chem. Phys.
136
,
064709
(
2012
).
37.
A.
Statt
,
P.
Virnau
, and
K.
Binder
, “
Finite-size effects on liquid-solid phase coexistence and the estimation of crystal nucleation barriers
,”
Phys. Rev. Lett.
114
,
026101
(
2015
).
38.
E. M.
Blokhuis
and
J.
Kuipers
, “
Thermodynamic expressions for the Tolman length
,”
J. Chem. Phys.
124
,
074701
(
2006
).
39.
B. J.
Block
,
S. K.
Das
,
M.
Oettel
,
P.
Virnau
, and
K.
Binder
, “
Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study
,”
J. Chem. Phys.
133
,
154702
(
2010
).
40.
J. G.
Sampayo
,
A.
Malijevsky
,
E. A.
Muller
,
E.
de Miguel
, and
G.
Jackson
, “
Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension
,”
J. Chem. Phys.
132
,
141101
(
2010
).
41.
A.
Malijevsky
and
G.
Jackson
, “
A perspective on the interfacial properties of nanoscopic liquid drops
,”
J. Phys.: Condens. Matter
24
,
464121
(
2012
).
42.
H. M.
Lu
and
Q.
Jiang
, “
Size-dependent surface tension and Tolman’s length of droplets
,”
Langmuir
21
,
779
781
(
2005
).
43.
S.
Thompson
,
K.
Gubbins
,
J.
Walton
,
R.
Chantry
, and
J.
Rowlinson
, “
A molecular dynamics study of liquid drops
,”
J. Chem. Phys.
81
,
530
542
(
1984
).
44.
B.
Cheng
and
M.
Ceriotti
, “
Communication: Computing the Tolman length for solid-liquid interfaces
,”
J. Chem. Phys.
148
,
231102
(
2018
).
45.
G. V.
Lau
,
I. J.
Ford
,
P. A.
Hunt
,
E. A.
Müller
, and
G.
Jackson
, “
Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water
,”
J. Chem. Phys.
142
,
114701
(
2015
).
46.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
,
1509
(
2006
).
47.
O.
Wilhelmsen
,
D.
Bedeaux
, and
D.
Reguera
, “
Tolman length and rigidity constants of the Lennard-Jones fluid
,”
J. Chem. Phys.
142
,
064706
(
2015
).
48.
M. N.
Joswiak
,
R.
Do
,
M. F.
Doherty
, and
B.
Peters
, “
Energetic and entropic components of the Tolman length for mW and TIP4P/2005 water nanodroplets
,”
J. Chem. Phys.
145
,
204703
(
2016
).
49.
J. W. P.
Schmelzer
,
A. S.
Abyzov
, and
V. G.
Baidakov
, “
Entropy and the Tolman parameter in nucleation theory
,”
Entropy
21
,
670
(
2019
).
50.
D.
Richard
and
T.
Speck
, “
Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension
,”
J. Chem. Phys.
148
,
224102
(
2018
).
51.
K.
Gunawardana
and
X.
Song
, “
Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid
,”
J. Chem. Phys.
148
,
204506
(
2018
).
52.
A. O.
Tipeev
, “
Comment on “Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid” [J. Chem. Phys. 148, 204506 (2018)]
,”
J. Chem. Phys.
151
,
017101
(
2019
).
53.
K.
Gunawardana
and
X.
Song
, “
Response to “Comment on ‘Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid [J. Chem. Phys. 151, 017101 (2019)]’”
,”
J. Chem. Phys.
151
,
017102
(
2019
).
54.
J. R.
Espinosa
,
A.
Zaragoza
,
P.
Rosales-Pelaez
,
C.
Navarro
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation
,”
Phys. Rev. Lett.
117
,
135702
(
2016
).
55.
J.
Russo
,
F.
Romano
, and
H.
Tanaka
, “
New metastable form of ice and its role in the homogeneous crystallization of water
,”
Nat. Mater.
13
,
733
(
2014
).
56.
B. B.
Laird
,
R. L.
Davidchack
,
Y.
Yang
, and
M.
Asta
, “
Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration
,”
J. Chem. Phys.
131
,
114110
(
2009
).
57.
J. R.
Errington
, “
Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation
,”
J. Chem. Phys.
118
,
9915
9925
(
2003
).
58.
J.
Broughton
and
G.
Gilmer
, “
Surface free energy and stress of a Lennard-Jones crystal
,”
Acta Metall.
31
,
845
851
(
1983
).
59.
J.
Jover
,
A.
Haslam
,
A.
Galindo
,
G.
Jackson
, and
E.
Müller
, “
Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules
,”
J. Chem. Phys.
137
,
144505
(
2012
).
60.
J. L. F.
Abascal
,
E.
Sanz
,
R. G.
Fernandez
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
61.
J. R.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On the time required to freeze water
,”
J. Chem. Phys.
145
,
211922
(
2016
).
62.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/ice and mW models as obtained from the mold integration technique
,”
J. Phys. Chem. C
120
,
8068
8075
(
2016
).
63.
R. L.
Davidchack
,
J. R.
Morris
, and
B. B.
Laird
, “
The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations
,”
J. Chem. Phys.
125
,
094710
(
2006
).
64.
J. R.
Morris
and
X.
Song
, “
The anisotropic free energy of the Lennard-Jones crystal-melt interface
,”
J. Chem. Phys.
119
,
3920
3925
(
2003
).
65.
J. J.
Hoyt
,
M.
Asta
, and
A.
Karma
, “
Method for computing the anisotropy of the solid-liquid interfacial free energy
,”
Phys. Rev. Lett.
86
,
5530
5533
(
2001
).
66.
R.
Handel
,
R. L.
Davidchack
,
J.
Anwar
, and
A.
Brukhno
, “
Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface
,”
Phys. Rev. Lett.
100
,
036104
(
2008
).
67.
L.-K.
Wu
,
Q.-L.
Li
,
M.
Li
,
B.
Xu
,
W.
Liu
,
P.
Zhao
, and
B.-Z.
Bai
, “
Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system
,”
Rare Met.
37
,
543
(
2018
).
68.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations
,”
J. Chem. Phys.
141
,
134709
(
2014
).
69.
R. L.
Davidchack
and
B. B.
Laird
, “
Crystal structure and interaction dependence of the crystal-melt interfacial free energy
,”
Phys. Rev. Lett.
94
,
086102
(
2005
).
70.
R. L.
Davidchack
, “
Hard spheres revisited: Accurate calculation of the solid–liquid interfacial free energy
,”
J. Chem. Phys.
133
,
234701
(
2010
).
71.
E.
Baldi
,
M.
Ceriotti
, and
G. A.
Tribello
, “
Extracting the interfacial free energy and anisotropy from a smooth fluctuating dividing surface
,”
J. Phys.: Condens. Matter
29
,
445001
(
2017
).
72.
P.
Koß
,
A.
Statt
,
P.
Virnau
, and
K.
Binder
, “
Free-energy barriers for crystal nucleation from fluid phases
,”
Phys. Rev. E
96
,
042609
(
2017
).
73.
P.
Koß
,
A.
Statt
,
P.
Virnau
, and
K.
Binder
, “
The phase coexistence method to obtain surface free energies and nucleation barriers: A brief review
,”
Mol. Phys.
116
,
2977
2986
(
2018
).
74.
N.
Bruot
and
F.
Caupin
, “
Curvature dependence of the liquid-vapor surface tension beyond the Tolman approximation
,”
Phys. Rev. Lett.
116
,
056102
(
2016
).
75.
S.
Kim
,
D.
Kim
,
J.
Kim
,
S.
An
, and
W.
Jhe
, “
Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale
,”
Phys. Rev. X
8
,
041046
(
2018
).
76.
A. K.
Sharma
and
F. A.
Escobedo
, “
Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry
,”
J. Chem. Phys.
148
,
184104
(
2018
).
77.
L.
Granasy
,
T.
Pusztai
, and
P. F.
James
, “
Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis
,”
J. Chem. Phys.
117
,
6157
6168
(
2002
).
78.
H. R.
Pruppacher
, “
A new look at homogeneous ice nucleation in supercooled water drops
,”
J. Atmos. Sci.
52
,
1924
(
1995
).
79.
S.
Hardy
, “
A grain boundary groove measurement of the surface tension between ice and water
,”
Philos. Mag.
35
,
471
484
(
1977
).
80.
J. Q.
Broughton
and
G. H.
Gilmer
, “
Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems
,”
J. Chem. Phys.
84
,
5759
5768
(
1986
).
81.
S.
Angioletti-Uberti
,
M.
Ceriotti
,
P. D.
Lee
, and
M. W.
Finnis
, “
Solid-liquid interface free energy through metadynamics simulations
,”
Phys. Rev. B
81
,
125416
(
2010
).
82.
L. A.
Fernandez
,
V.
Martin-Mayor
,
B.
Seoane
, and
P.
Verrocchio
, “
Equilibrium fluid-solid coexistence of hard spheres
,”
Phys. Rev. Lett.
108
,
165701
(
2012
).
83.
R.
Benjamin
and
J.
Horbach
, “
Crystal-liquid interfacial free energy via thermodynamic integration
,”
J. Chem. Phys.
141
,
044715
(
2014
).
84.
A. O.
Tipeev
,
E. D.
Zanotto
, and
J. P.
Rino
, “
Diffusivity, interfacial free energy, and crystal nucleation in a supercooled Lennard-Jones liquid
,”
J. Phys. Chem. C
122
,
28884
28894
(
2018
).
85.
V. G.
Baidakov
and
A. O.
Tipeev
, “
Crystal nucleation and the solid–liquid interfacial free energy
,”
J. Chem. Phys.
136
,
074510
(
2012
).
86.
B. B.
Laird
, “
The solid–liquid interfacial free energy of close-packed metals: Hard-spheres and the turnbull coefficient
,”
J. Chem. Phys.
115
,
2887
2888
(
2001
).
You do not currently have access to this content.