The present paper is the second part of a series of papers aimed at assessing the accuracy of alchemical computational approaches based on nonequilibrium techniques for solvation free energy of organic molecules in the context of molecular dynamics simulations. In Paper I [Procacci, J. Chem. Phys. 151, 144113 (2019)], we dealt with bidirectional estimates of solvation free energies using nonequilibrium approaches. Here, we assess accuracy and precision of unidirectional estimates with the focus on the Gaussian and Jarzynski estimators. We present a very simple methodology to increase the statistics in the work distribution, hence boosting the accuracy and precision of the Jarzynski unidirectional estimates at no extra cost, exploiting the observed decorrelation between the random variables represented by the Lennard-Jones solute-solvent recoupling or decoupling work and by the electrostatic work due to the charging/discharging of the solute in the solvent.

1.
W. L.
Jorgensen
,
J. K.
Buckner
,
S.
Boudon
, and
J.
TiradoRives
, “
Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water
,”
J. Chem. Phys.
89
,
3742
3746
(
1988
).
2.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
,
1420
1426
(
1954
).
3.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
313
(
1935
).
4.
C. C.
Bannan
,
K. H.
Burley
,
M.
Chiu
,
M. R.
Shirts
,
M. K.
Gilson
, and
D. L.
Mobley
, “
Blind prediction of cyclohexane-water distribution coefficients from the sampl5 challenge
,”
J. Comput.-Aided Mol. Des.
30
(
11
),
927
944
(
2016
).
5.
See https://drugdesigndata.org/about/sampl for Drug Design Data Resource (D3R), SAMPL6: Host-guest binding and physical property prediction; accessed 16 May 2019.
6.
M. R.
Shirts
,
D. L.
Mobley
, and
J. D.
Chodera
, “
Alchemical free energy calculations: Ready for prime time?
,”
Annu. Rep. Comput. Chem.
3
,
41
59
(
2007
).
7.
A.
Pohorille
,
C.
Jarzynski
, and
C.
Chipot
, “
Good practices in free-energy calculations
,”
J. Phys. Chem. B
114
(
32
),
10235
10253
(
2010
).
8.
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
, “
Alchemical free energy methods for drug discovery: Progress and challenges
,”
Curr. Opin. Struct. Biol.
21
,
150
160
(
2011
).
9.
M. R.
Shirts
and
D. L.
Mobley
, “
An introduction to best practices in free energy calculations
,”
Methods Mol. Biol.
924
,
271
311
(
2013
).
10.
V.
Gapsys
,
D.
Seeliger
, and
B. L.
de Groot
, “
New soft-core potential function for molecular dynamics based alchemical free energy calculations
,”
J. Chem. Theory Comput.
8
,
2373
2382
(
2012
).
11.
P.
Procacci
and
C.
Cardelli
, “
Fast switching alchemical transformations in molecular dynamics simulations
,”
J. Chem. Theory Comput.
10
,
2813
2823
(
2014
).
12.
V.
Gapsys
,
S.
Michielssens
,
D.
Seeliger
, and
B. L.
de Groot
, “
Accurate and rigorous prediction of the changes in protein free energies in a large-scale mutation scan
,”
Angew. Chem., Int. Ed. Engl.
55
(
26
),
7364
7368
(
2016
).
13.
B. K.
Radak
and
B.
Roux
, “
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
,”
J. Chem. Phys.
145
(
13
),
134109
(
2016
).
14.
M.
Aldeghi
,
V.
Gapsys
, and
B. L.
de Groot
, “
Accurate estimation of ligand binding affinity changes upon protein mutation
,”
ACS Cent. Sci.
4
(
12
),
1708
1718
(
2018
).
15.
A.
Yildirim
,
T. A.
Wassenaar
, and
D.
van der Spoel
, “
Statistical efficiency of methods for computing free energy of hydration
,”
J. Chem. Phys.
149
(
14
),
144111
(
2018
).
16.
G. E.
Crooks
, “
Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems
,”
J. Stat. Phys.
90
,
1481
1487
(
1998
).
17.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
18.
P.
Procacci
, “
Precision and computational efficiency of nonequilibrium alchemical methods for computing free energies of solvation. I. Bidirectional approaches
,”
J. Chem. Phys.
151
,
144113
(
2019
).
19.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
,
245
268
(
1976
).
20.
M.
Arrar
,
F. M.
Boubeta
,
M.
Eugenia Szretter
,
M.
Sued
,
L.
Boechi
, and
D.
Rodriguez
, “
On the accurate estimation of free energies using the jarzynski equality
,”
J. Comput. Chem.
40
(
4
),
688
696
(
2019
).
21.
R. B.
Sandberg
,
M.
Banchelli
,
C.
Guardiani
,
S.
Menichetti
,
G.
Caminati
, and
P.
Procacci
, “
Efficient nonequilibrium method for binding free energy calculations in molecular dynamics simulations
,”
J. Chem. Theory Comput.
11
(
2
),
423
435
(
2015
).
22.
P.
Procacci
, “
I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: A theoretical framework
,”
Phys. Chem. Chem. Phys.
18
,
14991
15004
(
2016
).
23.
F.
Nerattini
,
R.
Chelli
, and
P.
Procacci
, “
II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: Application to the FK506-related immunophilin ligands
,”
Phys. Chem. Chem. Phys.
18
,
15005
15018
(
2016
).
24.
V.
Gapsys
,
S.
Michielssens
,
J. H.
Peters
,
B. L.
de Groot
, and
H.
Leonov
, “
Calculation of binding free energies
,” in
Molecular Modeling of Protein
(
Humana Press
,
2015
), pp.
173
209
.
25.
M. K.
Gilson
,
J. A.
Given
,
B. L.
Bush
, and
J. A.
McCammon
, “
The statistical-thermodynamic basis for computation of binding affinities: A critical review
,”
Biophys. J.
72
,
1047
1069
(
1997
).
26.
P.
Procacci
and
R.
Chelli
, “
Statistical mechanics of ligand-receptor noncovalent association, revisited: Binding site and standard state volumes in modern alchemical theories
,”
J. Chem. Theory Comput.
13
(
5
),
1924
1933
(
2017
).
27.
P.
Procacci
, “
Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures
,”
J. Chem. Phys.
142
(
15
),
154117
(
2015
).
28.
P.
Procacci
, “
Myeloid cell leukemia 1 inhibition: An in silico study using non-equilibrium fast double annihilation technology
,”
J. Chem. Theory Comput.
14
(
7
),
3890
3902
(
2018
).
29.
P.
Procacci
,
M.
Guarrasi
, and
G.
Guarnieri
, “
Sampl6 host–guest blind predictions using a non equilibrium alchemical approach
,”
J. Comput. Aided Mol. Des.
32
(
10
),
965
982
(
2018
).
30.
G.
Hummer
, “
Fast-growth thermodynamic integration: Error and efficiency analysis
,”
J. Chem. Phys.
114
,
7330
7337
(
2001
).
31.
J.
Gore
,
F.
Ritort
, and
C.
Bustamante
, “
Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
22
),
12564
12569
(
2003
).
32.
S.
Park
and
K.
Schulten
, “
Calculating potentials of mean force from steered molecular dynamics simulations
,”
J. Chem. Phys.
120
(
13
),
5946
5961
(
2004
).
33.
M. R.
Shirts
and
V. S.
Pande
, “
Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration
,”
J. Chem. Phys.
122
(
14
),
144107
(
2005
).
34.
H.
Oberhofer
,
C.
Dellago
, and
P. L.
Geissler
, “
Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods?
,”
J. Phys. Chem. B
109
(
14
),
6902
6915
(
2005
).
35.
P.
Procacci
,
S.
Marsili
,
A.
Barducci
,
G. F.
Signorini
, and
R.
Chelli
, “
Crooks equation for steered molecular dynamics using a Nosé-Hoover thermostat
,”
J. Chem. Phys.
125
,
164101
(
2006
).
36.
K.
Krishnamoorthy
,
Handbook of Statistical Distributions with Applications
(
Chapman and Hall/CRC
,
London, UK
,
2006
).
37.
T.
Ul Islam
, “
Stringency-based ranking of normality tests
,”
Commun. Stat. Simul. Comput.
46
(
1
),
655
668
(
2017
).
38.
E. H.
Feng
and
G. E.
Crooks
, “
Length of time’s arrow
,”
Phys. Rev. Lett.
101
,
090602
(
2008
).
39.
GAFF and GAFF2 are public domain force fields and are part of the AmberTools16 distribution, available for download at http://amber.org internet address; accessed March 2017. According to the AMBER development team, the improved version of GAFF, GAFF2, is an ongoing project aimed at “reproducing both the high quality interaction energies and key liquid properties such as density, heat of vaporization and hydration free energy.” GAFF2 is expected “to be an even more successful general purpose force field and that GAFF2-based scoring functions will significantly improve the successful rate of virtual screenings.”
40.
P.
Procacci
, “
Primadorac: A free web interface for the assignment of partial charges, chemical topology, and bonded parameters in organic or drug molecules
,”
J. Chem. Inf. Model.
57
(
6
),
1240
1245
(
2017
).
41.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
, “
Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
,”
J. Comput. Chem.
23
(
16
),
1623
1641
(
2002
).
42.
S.
Izadi
and
A. V.
Onufriev
, “
Accuracy limit of rigid 3-point water models
,”
J. Chem. Phys.
145
(
7
),
074501
(
2016
).
43.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
44.
P.
Liu
,
B.
Kim
,
R. A.
Friesner
, and
B. J.
Berne
, “
Replica exchange with solute tempering: A method for sampling biological systems in explicit water
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
13749
13754
(
2005
).
45.
S.
Marsili
,
G. F.
Signorini
,
R.
Chelli
,
M.
Marchi
, and
P.
Procacci
, “
ORAC: A molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level
,”
J. Comput. Chem.
31
,
1106
1116
(
2010
).
46.
G.
Ponti
,
F.
Palombi
,
D.
Abate
,
F.
Ambrosino
,
G.
Aprea
,
T.
Bastianelli
,
F.
Beone
,
R.
Bertini
,
G.
Bracco
,
M.
Caporicci
,
B.
Calosso
,
M.
Chinnici
,
A.
Colavincenzo
,
A.
Cucurullo
,
P.
Dangelo
,
M.
De Rosa
,
P.
De Michele
,
A.
Funel
,
G.
Furini
,
D.
Giammattei
,
S.
Giusepponi
,
R.
Guadagni
,
G.
Guarnieri
,
A.
Italiano
,
S.
Magagnino
,
A.
Mariano
,
G.
Mencuccini
,
C.
Mercuri
,
S.
Migliori
,
P.
Ornelli
,
S.
Pecoraro
,
A.
Perozziello
,
S.
Pierattini
,
S.
Podda
,
F.
Poggi
,
A.
Quintiliani
,
A.
Rocchi
,
C.
Scio
,
F.
Simoni
, and
A.
Vita
, “
The role of medium size facilities in the hpc ecosystem: The case of the new cresco4 cluster integrated in the ENEAGRID infrastructure
,” in
Proceeding of the International Conference on High Performance Computing and Simulation
(
Institute of Electrical and Electronics Engineers (IEEE)
,
2014
), pp.
1030
1033
.
47.
P.
Procacci
, “
Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations
,”
J. Chem. Inf. Model.
56
(
6
),
1117
1121
(
2016
).
48.
I. C.
de Vaca
,
R.
Zarzuela
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Robust free energy perturbation protocols for creating molecules in solution
,”
J. Chem. Theory Comput.
15
(
7
),
3941
3948
(
2019
).
49.
L. N.
Naden
and
M. R.
Shirts
, “
Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with coulombic interactions
,”
J. Chem. Theory Comput.
,
11
,
2536
2549
(
2015
).
50.
D. K.
Shenfeld
,
H.
Xu
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
, “
Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations
,”
Phys. Rev. E
80
,
046705
(
2009
).
51.
T. W.
Anderson
and
D. A.
Darling
, “
A test of goodness of fit
,”
J. Am. Stat. Ass.
49
,
765
769
(
1954
).
52.
D.
Vassetti
,
M.
Pagliai
, and
P.
Procacci
, “
Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules
,”
J. Chem. Theory Comput.
15
(
3
),
1983
1995
(
2019
).
53.
A.
Rizzi
, “
The SAMPL6 SAMPLing challenge: Assessing reliability and efficiency of binding free energy calculations
,” paper presented at the XII European Workshop in Drug Design, Siena, 2019, available at the internet address (as of 20 June 2019): http://www.ewdd.it/documents/XII_EWDD_Slides.zip.
54.
P.
Procacci
, “
Alchemical determination of drug-receptor binding free energy: Where we stand and where we could move to
,”
J. Mol. Graphics Modell.
71
,
233
241
(
dec 2017
).
55.
N.
Lu
and
D. A.
Kofke
, “
Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling
,”
J. Chem. Phys.
114
(
17
),
7303
7311
(
2001
).

Supplementary Material

You do not currently have access to this content.