Molecular dynamics simulations contain detailed kinetic information related to the functional states of proteins and macromolecules, but this information is obscured by the high dimensionality of configurational space. Markov state models and transition network models are widely applied to extract kinetic descriptors from equilibrium molecular dynamics simulations. In this study, we developed the Directed Kinetic Transition Network (DKTN)—a graph representation of a master equation which is appropriate for describing nonequilibrium kinetics. DKTN models the transition rate matrix among different states under detailed balance. Adopting the mixing time from the Markov chain, we use the half mixing time as the criterion to identify critical state transition regarding the protein conformational change. The similarity between the master equation and the Kolmogorov equation suggests that the DKTN model can be reformulated into the continuous-time Markov chain model, which is a general case of the Markov chain without a specific lag time. We selected a photo-sensitive protein, vivid, as a model system to illustrate the usage of the DKTN model. Overall, the DKTN model provides a graph representation of the master equation based on chemical kinetics to model the protein conformational change without the underlying assumption of the Markovian property.

1.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Exploring protein native states and large-scale conformational changes with a modified generalized born model
,”
Proteins: Struct., Funct., Bioinf.
55
,
383
394
(
2004
).
2.
H. N.
Motlagh
,
J. O.
Wrabl
,
J.
Li
, and
V. J.
Hilser
, “
The ensemble nature of allostery
,”
Nature
508
,
331
339
(
2014
).
3.
M.
Karplus
and
J.
Kuriyan
, “
Molecular dynamics and protein function
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6679
6685
(
2005
).
4.
J. L.
Klepeis
,
K.
Lindorff-Larsen
,
R. O.
Dror
, and
D. E.
Shaw
, “
Long-timescale molecular dynamics simulations of protein structure and function
,”
Curr. Opin. Struct. Biol.
19
,
120
127
(
2009
).
5.
A.
Amadei
,
A. B.
Linssen
, and
H. J.
Berendsen
, “
Essential dynamics of proteins
,”
Proteins: Struct., Funct., Bioinf.
17
,
412
425
(
1993
).
6.
V.
Daggett
, “
Molecular dynamics simulations of the protein unfolding/folding reaction
,”
Acc. Chem. Res.
35
,
422
429
(
2002
).
7.
C. D.
Snow
,
H.
Nguyen
,
V. S.
Pande
, and
M.
Gruebele
, “
Absolute comparison of simulated and experimental protein-folding dynamics
,”
Nature
420
,
102
(
2002
).
8.
R.
Elber
and
M.
Karplus
, “
Enhanced sampling in molecular dynamics: Use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin
,”
J. Am. Chem. Soc.
112
,
9161
9175
(
1990
).
9.
X.
Huang
,
G. R.
Bowman
, and
V. S.
Pande
, “
Convergence of folding free energy landscapes via application of enhanced sampling methods in a distributed computing environment
,”
J. Chem. Phys.
128
,
205106
(
2008
).
10.
H.
Zhou
,
B. D.
Zoltowski
, and
P.
Tao
, “
Revealing hidden conformational space of LOV protein Vivid through rigid residue scan simulations
,”
Sci. Rep.
7
,
46626
(
2017
).
11.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
, “
To milliseconds and beyond: Challenges in the simulation of protein folding
,”
Curr. Opin. Struct. Biol.
23
,
58
65
(
2013
).
12.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
, “
Molecular simulation of ab initio protein folding for a millisecond folder NTL9 (1–39)
,”
J. Am. Chem. Soc.
132
,
1526
1528
(
2010
).
13.
G. R.
Bowman
,
X.
Huang
, and
V. S.
Pande
, “
Using generalized ensemble simulations and Markov state models to identify conformational states
,”
Methods
49
,
197
201
(
2009
).
14.
F.
Noé
and
S.
Fischer
, “
Transition networks for modeling the kinetics of conformational change in macromolecules
,”
Curr. Opin. Struct. Biol.
18
,
154
162
(
2008
).
15.
F.
Noé
,
D.
Krachtus
,
J. C.
Smith
, and
S.
Fischer
, “
Transition networks for the comprehensive characterization of complex conformational change in proteins
,”
J. Chem. Theory Comput.
2
,
840
857
(
2006
).
16.
J.-H.
Prinz
,
B.
Keller
, and
F.
Noé
, “
Probing molecular kinetics with Markov models: Metastable states, transition pathways and spectroscopic observables
,”
Phys. Chem. Chem. Phys.
13
,
16912
16927
(
2011
).
17.
H.
Zhou
and
P.
Tao
, “
REDAN: Relative entropy-based dynamical allosteric network model
,”
Mol. Phys.
117
,
1334
1343
(
2018
).
18.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
, “
Progress and challenges in the automated construction of Markov state models for full protein systems
,”
J. Chem. Phys.
131
,
124101
(
2009
).
19.
N.-V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
20.
S.
Cao
and
S.-J.
Chen
, “
Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity
,”
J. Mol. Biol.
367
,
909
924
(
2007
).
21.
W. C.
Swope
,
J. W.
Pitera
,
F.
Suits
,
M.
Pitman
,
M.
Eleftheriou
,
B. G.
Fitch
,
R. S.
Germain
,
A.
Rayshubski
,
T. C.
Ward
, and
Y.
Zhestkov
, “
Describing protein folding kinetics by molecular dynamics simulations. 2. Example applications to alanine dipeptide and a Β-hairpin peptide
,”
J. Phys. Chem. B
108
,
6582
6594
(
2004
).
22.
Y.
Levy
,
J.
Jortner
, and
R. S.
Berry
, “
Eigenvalue spectrum of the master equation for hierarchical dynamics of complex systems
,”
Phys. Chem. Chem. Phys.
4
,
5052
5058
(
2002
).
23.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
, “
Everything you wanted to know about Markov state models but were afraid to ask
,”
Methods
52
,
99
105
(
2010
).
24.
T. J.
Lane
,
G. R.
Bowman
,
K.
Beauchamp
,
V. A.
Voelz
, and
V. S.
Pande
, “
Markov state model reveals folding and functional dynamics in ultra-long MD trajectories
,”
J. Am. Chem. Soc.
133
,
18413
18419
(
2011
).
25.
G. R.
Bowman
,
E. R.
Bolin
,
K. M.
Hart
,
B. C.
Maguire
, and
S.
Marqusee
, “
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
2734
(
2015
).
26.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
27.
M.
Sarich
,
F.
Noé
, and
C.
Schütte
, “
On the approximation quality of Markov state models
,”
Multiscale Model. Simul.
8
,
1154
1177
(
2010
).
28.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
29.
F.
Noé
,
H.
Wu
,
J.-H.
Prinz
, and
N.
Plattner
, “
Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules
,”
J. Chem. Phys.
139
,
184114
(
2013
).
30.
H.
Liu
,
M.
Li
,
J.
Fan
, and
S.
Huo
, “
Inherent structure versus geometric metric for state space discretization
,”
J. Comput. Chem.
37
,
1251
1258
(
2016
).
31.
H.
Zhou
,
Z.
Dong
,
G.
Verkhivker
,
B. D.
Zoltowski
, and
P.
Tao
, “
Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis
,”
PLoS Comput. Biol.
15
,
e1006801
(
2019
).
32.
B. J.
Foley
,
H.
Stutts
,
S. L.
Schmitt
,
J.
Lokhandwala
,
A.
Nagar
, and
B. D.
Zoltowski
, “
Characterization of a Vivid homolog in Botrytis cinerea
,”
Photochem. Photobiol.
94
,
985
993
(
2018
).
33.
B. D.
Zoltowski
,
B.
Vaccaro
, and
B. R.
Crane
, “
Mechanism-based tuning of a LOV domain photoreceptor
,”
Nat. Chem. Biol.
5
,
827
834
(
2009
).
34.
B. D.
Zoltowski
,
C.
Schwerdtfeger
,
J.
Widom
,
J. J.
Loros
,
A. M.
Bilwes
,
J. C.
Dunlap
, and
B. R.
Crane
, “
Conformational switching in the fungal light sensor Vivid
,”
Science
316
,
1054
1057
(
2007
).
35.
C.
Moler
and
C.
Van Loan
, “
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
,”
SIAM Rev.
45
,
3
49
(
2003
).
36.
S.
Schuster
and
R.
Schuster
, “
Detecting strictly detailed balanced subnetworks in open chemical reaction networks
,”
J. Math. Chem.
6
,
17
40
(
1991
).
37.
J. J.
Dongarra
, “
Performance of various computers using standard linear equations software
,”
ACM SIGARCH Comput. Archit. News
20
,
22
44
(
1992
).
38.
W. J.
Anderson
,
Continuous-Time Markov Chains: An Applications-Oriented Approach
(
Springer Science & Business Media
,
2012
).
39.
W.
Whitt
,
Continuous-Time Markov Chains
(
Columbia University
,
New York
,
2006
), p.
65
.
40.
K. A.
Connors
,
Chemical Kinetics: The Study of Reaction Rates in Solution
(
John Wiley & Sons
,
1990
).
41.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
42.
S.
Boyd
,
P.
Diaconis
, and
L.
Xiao
, “
Fastest mixing Markov chain on a graph
,”
SIAM Rev.
46
,
667
689
(
2004
).
43.
H. M.
Berman
,
T. N.
Bhat
,
P. E.
Bourne
,
Z.
Feng
,
G.
Gilliland
,
H.
Weissig
, and
J.
Westbrook
, “
The protein data bank and the challenge of structural genomics
,”
Nat. Struct. Mol. Biol.
7
,
957
959
(
2000
).
44.
P. L.
Freddolino
,
K. H.
Gardner
, and
K.
Schulten
, “
Signaling mechanisms of LOV domains: New insights from molecular dynamics studies
,”
Photochem. Photobiol. Sci.
12
,
1158
1170
(
2013
).
45.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
46.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
47.
B. R.
Brooks
,
C. L.
Brooks
,
A. D.
MacKerell
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
, and
S.
Boresch
, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
48.
P.
Eastman
and
V.
Pande
, “
OpenMM: A hardware-independent framework for molecular simulations
,”
Comput. Sci. Eng.
12
,
34
39
(
2010
).
49.
L.
van der Maaten
and
G.
Hinton
, “
Visualizing data using t-SNE
,”
J. Mach. Learn. Res.
9
,
2579
2605
(
2008
).
50.
H.
Zhou
,
F.
Wang
, and
P.
Tao
, “
t-Distributed stochastic neighbor embedding (t-SNE) method with the least information loss for macromolecular simulations
,”
J. Chem. Theory Comput.
14
,
5499
(
2018
).
51.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
, and
V.
Dubourg
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
52.
P.
Pisani
,
P.
Piro
,
S.
Decherchi
,
G.
Bottegoni
,
D.
Sona
,
V.
Murino
,
W.
Rocchia
, and
A.
Cavalli
, “
Describing the conformational landscape of small organic molecules through Gaussian mixtures in dihedral space
,”
J. Chem. Theory Comput.
10
,
2557
2568
(
2014
).
53.
T. L.
Bailey
and
C.
Elkan
, “
Fitting a mixture model by expectation maximization to discover motifs in bipolymers
,”
Proc. Int. Conf. Intell. Syst. Mol. Biol.
2
,
28
36
(
1994
).
54.
H.
Zhou
,
Z.
Dong
, and
P.
Tao
, “
Recognition of protein allosteric states and residues: Machine learning approaches
,”
J. Comput. Chem.
39
,
1481
1490
(
2018
).
55.
R.
Kalescky
,
H.
Zhou
,
J.
Liu
, and
P.
Tao
, “
Rigid residue scan simulations systematically reveal residue entropic roles in protein allostery
,”
PLoS Comput. Biol.
12
,
e1004893
(
2016
).
56.
R. A.
Kohavi
, “
Study of cross-validation and bootstrap for accuracy estimation and model selection
,” in
IJCAI 1995, Montreal, Canada
(
Morgan Kaufmann Publishers Inc.
,
1995
), Vol. 14, pp.
1137
1145
.
57.
B. E.
Husic
and
V. S.
Pande
, “
Note: MSM lag time cannot be used for variational model selection
,”
J. Chem. Phys.
147
,
176101
(
2017
).
58.
F.
Noé
and
F.
Nuske
, “
A variational approach to modeling slow processes in stochastic dynamical systems
,”
Multiscale Model. Simul.
11
,
635
655
(
2013
).
59.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
60.
H.
Zhou
and
P.
Tao
, “
Dynamics sampling in transition pathway space
,”
J. Chem. Theory Comput.
14
,
14
29
(
2018
).
61.
R. C.
Bernardi
,
M. C.
Melo
, and
K.
Schulten
, “
Enhanced sampling techniques in molecular dynamics simulations of biological systems
,”
Biochim. Biophys. Acta, Gen. Subj.
1850
,
872
877
(
2015
).
62.
B. D.
Zoltowski
and
B. R.
Crane
, “
Light activation of the LOV protein Vivid generates a rapidly exchanging dimer
,”
Biochemistry
47
,
7012
7019
(
2008
).
63.
J.
Lokhandwala
,
H. C.
Hopkins
,
A.
Rodriguez-Iglesias
,
C.
Dattenböck
,
M.
Schmoll
, and
B. D.
Zoltowski
, “
Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress
,”
Structure
23
,
116
125
(
2015
).
64.
A.
Pudasaini
,
J. S.
Shim
,
Y. H.
Song
,
H.
Shi
,
T.
Kiba
,
D. E.
Somers
,
T.
Imaizumi
, and
B. D.
Zoltowski
, “
Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis
,”
Elife
6
,
e21646
(
2017
).
65.
J. S.
Lamb
,
B. D.
Zoltowski
,
S. A.
Pabit
,
L.
Li
,
B. R.
Crane
, and
L.
Pollack
, “
Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering
,”
J. Mol. Biol.
393
,
909
919
(
2009
).

Supplementary Material

You do not currently have access to this content.