Recently, we developed a new method for generating effective core potentials (ECPs) using valence energy isospectrality with explicitly correlated all-electron (AE) excitations and norm-conservation criteria. We apply this methodology to the 3rd-row main group elements, creating new correlation consistent ECPs (ccECPs) and also deriving additional ECPs to complete the ccECP table for H–Kr. For K and Ca, we develop Ne-core ECPs, and for the 4p main group elements, we construct [Ar]3d10-core potentials. Scalar relativistic effects are included in their construction. Our ccECPs reproduce AE spectra with significantly better accuracy than many existing pseudopotentials and show better overall consistency across multiple properties. The transferability of ccECPs is tested on monohydride and monoxide molecules over a range of molecular geometries. For the constructed ccECPs, we also provide optimized DZ-6Z valence Gaussian basis sets.

1.
D. M.
Ceperley
,
J. Stat. Phys.
43
,
815
(
1986
).
2.
B. L.
Hammond
,
P. J.
Reynolds
, and
W. A.
Lester
,
J. Chem. Phys.
87
,
1130
(
1987
).
3.
P. H.
Acioli
and
D. M.
Ceperley
,
J. Chem. Phys.
100
,
8169
(
1994
).
4.
L.
Maron
and
C.
Teichteil
,
Chem. Phys.
237
,
105
(
1998
).
5.
E.
Fromager
,
L.
Maron
,
C.
Teichteil
,
J.-L.
Heully
,
K.
Faegri
, and
K.
Dyall
,
J. Chem. Phys.
121
,
8687
(
2004
).
6.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
139
,
014101
(
2013
).
7.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
142
,
064110
(
2015
).
8.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
146
,
204107
(
2017
).
9.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
147
,
224106
(
2017
).
10.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
149
,
104108
(
2018
).
11.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M.
Chandler Bennett
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
149
,
134108
(
2018
).
12.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
).
13.
M.
Born
and
R.
Oppenheimer
,
Ann. Phys.
389
,
457
(
1927
).
14.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
15.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., molpro, version 2019.1, a package of ab initio programs,
2019
, see http://www.molpro.net.
16.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
 et al., PySCF: The python-based simulations of chemistry framework,
2017
, https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340.
17.
P.
Spellucci
, DONLP2 nonlinear optimization code,
2009
, https://www2.mathematik.tu-darmstadt.de/fbereiche/numerik/staff/spellucci/DONLP2/.
18.
G.
Igel-Mann
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
65
,
1321
(
1988
).
19.
T.
Leininger
,
A.
Berning
,
A.
Nicklass
,
H.
Stoll
,
H.-J.
Werner
, and
H.-J.
Flad
,
Chem. Phys.
217
,
19
(
1997
).
20.
H.
Stoll
,
B.
Metz
, and
M.
Dolg
,
J. Comput. Chem.
23
,
767
(
2002
).
21.
J. G.
Hill
and
K. A.
Peterson
,
J. Chem. Phys.
147
,
244106
(
2017
).
22.
N. J.
DeYonker
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Phys. Chem. A
111
,
11383
(
2007
).
23.
W. J.
Stevens
,
H.
Basch
, and
M.
Krauss
,
J. Chem. Phys.
81
,
6026
(
1984
).
24.
W. J.
Stevens
,
M.
Krauss
,
H.
Basch
, and
P. G.
Jasien
,
Can. J. Chem.
70
,
612
(
1992
).
25.
L.
Fernandez Pacios
and
P.
Christiansen
,
J. Chem. Phys.
82
,
2664
(
1985
).
26.
M.
Hurley
,
L. F.
Pacios
,
P.
Christiansen
,
R.
Ross
, and
W.
Ermler
,
J. Chem. Phys.
84
,
6840
(
1986
).
27.
T. H.
Dunning
, Jr.
,
K. A.
Peterson
, and
D. E.
Woon
, “Basis sets: Correlation consistent sets,” in , edited by
P.
von Ragué Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
2002
), p. 88.
28.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
29.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
30.
P.
Schwerdtfeger
,
T.
Fischer
,
M.
Dolg
,
G.
Igel-Mann
,
A.
Nicklass
,
H.
Stoll
, and
A.
Haaland
,
J. Chem. Phys.
102
,
2050
(
1995
).
31.
T.
Leininger
,
A.
Nicklass
,
H.
Stoll
,
M.
Dolg
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
105
,
1052
(
1996
).
32.
A. R.
Oganov
and
P. I.
Dorogokupets
,
Phys. Rev. B
67
,
224110
(
2003
).
33.
34.
T.
Wang
,
X.
Zhou
, and
F.
Wang
,
J. Phys. Chem. A
123
,
3809
(
2019
).
35.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
36.
See https://pseudopotentiallibrary.org/ for Pseudopotential library.
37.
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
, Dataset for “a new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions.”

Supplementary Material

You do not currently have access to this content.