This paper focuses on the kinetics of Cr4+ formation in Cr,Ca:YAG ceramics prepared by solid-state reaction sintering. The kinetics of Cr4+ formation was studied by annealing of Cr,Ca:YAG ceramics in ambient air under different temperatures at different times, resulting in the transformation of Cr3+ to Cr4+. The activation energy (Ea) of Cr3+ oxidation determined by the Jander model was 2.7 ± 0.2 eV, which is in good correlation with the activation energy of innergrain oxygen diffusion in the YAG lattice. It is concluded that Cr3+ to Cr4+ transformation in YAG ceramics is limited by oxygen diffusion through the grain body. It was established that in Cr,Ca:YAG ceramics, the intralattice cation exchange, in which the Cr4+ ions exchange positions with the Al3+ ions, switching from “A” to “D” sites, is faster than Cr3+ to Cr4+ oxidation. In the temperature range of 900–1300 °C, the reaction enthalpy of Al3+/Cr4+ ion exchange between octahedral “A” and tetrahedral “D” lattice sites is close to zero, and this exchange ratio is thermodynamically driven by entropy.

1.
S.
Ubizskii
,
O.
Buryy
,
A.
Borger
, and
K.-D.
Becker
,
Phys. Status Solidi (a)
206
,
550
(
2009
).
2.
R.
Feldman
,
Y.
Shimony
, and
Z.
Burshtein
,
Opt. Mater.
24
,
333
(
2003
).
3.
O.
Buryy
,
S.
Ubiszkii
,
S.
Melnyk
, and
A.
Matkovskii
,
Appl. Phys. B
78
,
291
(
2004
).
4.
5.
H.
Yagi
,
K.
Takaichi
,
K. I.
Ueda
,
T.
Yanagitani
, and
A. A.
Kaminskii
,
Opt. Mater.
29
,
392
(
2006
).
6.
A.
Ikesue
,
K.
Kamata
, and
K.
Yoshida
,
J. Am. Ceram. Soc.
79
,
1921
(
1996
).
7.
I. O.
Vorona
,
R. P.
Yavetskiy
,
A. G.
Doroshenko
,
S. V.
Parkhomenko
,
V. N.
Baumer
,
A. V.
Tolmachev
,
D. Y.
Kosyanov
,
V. I.
Vovna
,
V. G.
Kuryavyi
,
M.
Greculeasa
,
L.
Gheorghe
,
S.
Hau
,
C.
Gheorghe
, and
G.
Croitoru
,
J. Eur. Ceram. Soc.
37
,
4115
(
2017
).
8.
S. S.
Balabanov
,
Y. V.
Bykov
,
S. V.
Egorov
,
A. G.
Eremeev
,
E. M.
Gavrishchuk
,
E. A.
Khazanov
, and
V. V.
Zelenogorskii
,
Quantum Electron.
43
,
396
(
2013
).
9.
T.
Zhou
,
L.
Zhang
,
Z.
Li
,
S.
Wei
,
J.
Wu
,
L.
Wang
,
H.
Yang
,
Z.
Fu
,
H.
Chen
,
C.
Wong
, and
Q.
Zhang
,
J. Alloys Compd.
703
,
34
(
2017
).
10.
T.
Zhou
,
L.
Zhang
,
J.
Zhang
,
H.
Yang
,
P.
Liu
,
Y.
Chen
,
X.
Qiao
, and
D.
Tang
,
Opt. Mater.
50
,
11
(
2015
).
11.
M.
Chaika
,
N.
Dulina
,
A.
Doroshenko
,
S.
Parkhomenko
,
O.
Gayduk
,
R.
Tomala
,
W.
Strek
,
D.
Hreniak
,
G.
Mancardi
, and
O.
Vovk
,
Ceram. Int.
44
,
13513
(
2018
).
12.
S. S.
Balabanov
,
E. M.
Gavrishchuk
,
V. V.
Drobotenko
,
O. V.
Palashov
,
E. Y.
Rostokina
, and
R. P.
Yavetskiy
,
Ceram. Int.
42
,
961
(
2016
).
13.
S.
Kück
,
K.
Petermann
,
U.
Pohlmann
, and
G.
Huber
,
J. Lumin.
68
,
1
(
1996
).
14.
A.
Wajler
,
A.
Kozłowska
,
M.
Nakielska
,
K.
Leśniewska-Matys
,
A.
Sidorowicz
,
D.
Podniesiński
, and
P.
Putyra
,
J. Am. Ceram. Soc.
97
,
1692
(
2014
).
15.
O.
Buryy
,
S.
Ubizskii
,
I.
Syvorotka
, and
K.
Becker
,
Acta Phys. Pol., A
117
,
184
(
2010
).
16.
W.
Strek
,
R.
Tomala
,
L.
Marciniak
,
M.
Lukaszewicz
,
B.
Cichy
,
M.
Stefanski
,
D.
Hreniak
,
A.
Kedziorski
,
M.
Krosnicki
, and
L.
Seijo
,
Phys. Chem. Chem. Phys.
18
,
27921
(
2016
).
17.
M.
Stefanski
,
M.
Lukaszewicz
,
D.
Hreniak
, and
W.
Strek
,
J. Chem. Phys.
146
,
104705
(
2017
).
18.
M.
Stefanski
,
M.
Lukaszewicz
,
D.
Hreniak
, and
W.
Strek
,
J. Lumin.
192
,
243
(
2017
).
19.
Z.
Barandiarán
,
A.
Meijerink
, and
L.
Seijo
,
Phys. Chem. Chem. Phys.
17
,
19874
(
2015
).
20.
J. J.
Joos
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Phys. Chem. Lett.
10
,
1581
(
2019
).
21.
T.
Zhou
,
L.
Zhang
,
C.
Shao
,
B.
Sun
,
W.
Bu
,
H.
Yang
,
H.
Chen
,
F. A.
Selim
, and
Q.
Zhang
,
Ceram. Int.
44
,
13820
(
2018
).
22.
M. A.
Chaika
,
O. M.
Vovk
,
N. A.
Safronova
,
A. G.
Doroshenko
,
S. V.
Parkhomenko
, and
A. V.
Tolmachev
,
Funct. Mater.
23
(
3
),
398
(
2016
).
23.
M. A.
Chaika
,
O. M.
Vovk
,
A. G.
Doroshenko
,
V. K.
Klochkov
,
P. V.
Mateychenko
,
S. V.
Parkhomenko
, and
O. G.
Fedorov
,
Funct. Mater.
24
,
237
(
2017
).
24.
M.
Chaika
,
W.
Paszkowicz
,
W.
Strek
,
D.
Hreniak
,
R.
Tomala
,
N.
Safronova
,
A.
Doroshenko
,
S.
Parkhomenko
,
P.
Dluzewski
,
M.
Kozowski
, and
O.
Vovk
,
J. Am. Ceram. Soc.
102
,
2104
(
2019
).
25.
H.
Yagi
,
T.
Yanagitani
,
T.
Numazawa
, and
K.
Ueda
,
Ceram. Int.
33
,
711
(
2007
).
26.
K. S.
Bagdasarov
,
L. B.
Pasternak
, and
B. K.
Sevast’yanov
,
Sov. J. Quantum Electron.
6
,
708
(
1976
).
27.
X.
Chen
,
Y.
Wu
,
Z.
Lu
,
N.
Wei
,
J.
Qi
,
Y.
Shi
,
T.
Hua
,
Q.
Zeng
,
W.
Guo
, and
T.
Lu
,
J. Am. Ceram. Soc.
101
,
5098
(
2018
).
28.
L.
Marciniak
,
A.
Bednarkiewicz
,
J.
Drabik
,
K.
Trejgis
, and
W.
Strek
,
Phys. Chem. Chem. Phys.
19
,
7343
(
2017
).
29.
P.
Gluchowski
,
D.
Hreniak
,
W.
Lojkowski
, and
W.
Strek
,
ECS Trans.
25
,
113
(
2009
).
30.
P.
Gluchowski
and
W.
Strek
,
Mater. Chem. Phys.
140
,
222
(
2013
).
31.
M.
Wojdyr
, “
Fityk: a general-purpose peak fitting program
,”
J. Appl. Crystallogr.
43
,
1126
(
2010
).
32.
C. M.
Metzler
and
D. E.
Metzler
,
Anal. Biochem.
166
,
313
(
1987
).
33.
34.
R.
Boulesteix
,
C.
Perrière
,
A.
Maître
,
L.
Chrétien
,
A.
Brenier
, and
Y.
Guyot
,
Opt. Mater.
96
,
109324
(
2019
).
35.
S. S.
Balabanov
,
E. M.
Gavrishchuk
,
E. Y.
Rostokina
,
A. D.
Plekhovich
,
V. N.
Kuryakov
,
S. V.
Amarantov
, and
R. P.
Yavetskiy
,
Ceram. Int.
42
,
17571
(
2016
).
36.
M.
Kreye
and
K.
Becker
,
Phys. Chem. Chem. Phys.
5
,
2283
(
2003
).
37.
H.
Haneda
,
I.
Sakaguchi
,
N.
Ohashi
,
N.
Saito
,
K.
Matsumoto
,
T.
Nakagawa
,
T.
Yanagitani
, and
H.
Yagi
,
Mater. Sci. Technol.
25
,
1341
(
2009
).
38.
W.
Jander
,
Z. Anorg. Allg. Chem.
163
,
1
(
1927
).
39.
Yu. D.
Tretyakov
,
Solid State Reactions
(
Chimiya
,
Moscow
,
1978
) (in Russian).
40.
C.
Jun
,
C.
Dong-Quan
, and
Z.
Jing-Lin
,
Chin. Phys.
16
,
2779
(
2007
).
41.
Z.
Li
,
B.
Liu
,
J.
Wang
,
L.
Sun
,
J.
Wang
, and
Y.
Zhou
,
J. Am. Ceram. Soc.
95
,
3628
(
2012
).
42.
I.
Sakaguchi
,
H.
Haneda
,
J.
Tanaka
, and
T.
Yanagitani
,
J. Am. Ceram. Soc.
79
,
1627
(
1996
).
43.
S. R.
Rotman
,
R. P.
Tandon
, and
H. L.
Tuller
,
J. Appl. Phys.
57
,
1951
(
1985
).
44.
H.
Haneda
,
Y.
Miyazawa
, and
S.
Shirasaki
,
J. Cryst. Growth
68
,
581
(
1984
).
You do not currently have access to this content.