In2Te5 is a stoichiometric compound in the In–Te system of interest for applications in phase change electronic memories and thermoelectrics. Here, we perform a computational study of the structural, dynamical, and electronic properties of the liquid, supercooled liquid, and amorphous phases of this compound by means of density functional molecular dynamics simulations. Models of the supercooled liquid and amorphous phases have been generated by quenching from the melt. The structure of the liquid phase is characterized by a mixture of defective octahedral and tetrahedral local environments of In atoms, while the amorphous phase displays a mostly tetrahedral local geometry for In atoms with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the In2Te5, InTe, and In2Te3 compounds. Comparison with our previous results on liquid and amorphous In2Te3 and further data on the structural properties of liquid In2Te3 are also discussed. The analysis of the electronic properties highlights the opening of a mobility gap in In2Te5 at about 150 K below the liquidus temperature.

1.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
,
824
(
2007
).
2.
S.
Raoux
,
W.
Wełnic
, and
D.
Ielmini
, “
Phase change materials and their application to nonvolatile memories
,”
Chem. Rev.
110
,
240
267
(
2009
).
3.
A.
Pirovano
,
A. L.
Lacaita
,
A.
Benvenuti
,
F.
Pellizzer
, and
R.
Bez
, “
Electronic switching in phase-change memories
,”
IEEE Trans. Electron Devices
51
,
452
459
(
2004
).
4.
S. R.
Ovshinsky
, “
Reversible electrical switching phenomena in disordered structures
,”
Phys. Rev. Lett.
21
,
1450
(
1968
).
5.
M.-J.
Lee
,
D.
Lee
,
S.-H.
Cho
,
J.-H.
Hur
,
S.-M.
Lee
,
D. H.
Seo
,
D.-S.
Kim
,
M.-S.
Yang
,
S.
Lee
,
E.
Hwang
 et al., “
A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory
,”
Nat. Commun.
4
,
2629
(
2013
).
6.
Z.
Yang
and
P.
Lucas
, “
Tellurium-based far-infrared transmitting glasses
,”
J. Am. Ceram. Soc.
92
,
2920
2923
(
2009
).
7.
S.
Danto
,
P.
Houizot
,
C.
Boussard-Pledel
,
X.-H.
Zhang
,
F.
Smektala
, and
J.
Lucas
, “
A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications
,”
Adv. Funct. Mater.
16
,
1847
1852
(
2006
).
8.
J.
Akola
and
R.
Jones
, “
Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe
,”
Phys. Rev. B
76
,
235201
(
2007
).
9.
R.
Mazzarello
,
S.
Caravati
,
S.
Angioletti-Uberti
,
M.
Bernasconi
, and
M.
Parrinello
, “
Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials
,”
Phys. Rev. Lett.
104
,
085503
(
2010
).
10.
J.
Hegedüs
and
S.
Elliott
, “
Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials
,”
Nat. Mater.
7
,
399
(
2008
).
11.
S.
Caravati
,
M.
Bernasconi
,
T.
Kühne
,
M.
Krack
, and
M.
Parrinello
, “
Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials
,”
Appl. Phys. Lett.
91
,
171906
(
2007
).
12.
J. H.
Los
,
T. D.
Kühne
,
S.
Gabardi
, and
M.
Bernasconi
, “
First-principles study of the amorphous In3SbTe2 phase change compound
,”
Phys. Rev. B
88
,
174203
(
2013
).
13.
E.
Spreafico
,
S.
Caravati
, and
M.
Bernasconi
, “
First-principles study of liquid and amorphous InGeTe2
,”
Phys. Rev. B
83
,
144205
(
2011
).
14.
A.
Bouzid
,
S.
Gabardi
,
C.
Massobrio
,
M.
Boero
, and
M.
Bernasconi
, “
First-principles study of amorphous Ga4Sb6Te3 phase-change alloys
,”
Phys. Rev. B
91
,
184201
(
2015
).
15.
J.
Kalikka
,
J.
Akola
, and
R.
Jones
, “
Density functional simulations of structure and polymorphism in Ga/Sb films
,”
J. Phys.: Condens. Matter
25
,
115801
(
2013
).
16.
I.
Voleská
,
J.
Akola
,
P.
Jóvári
,
J.
Gutwirth
,
T.
Wágner
,
T.
Vasileiadis
,
S.
Yannopoulos
, and
R.
Jones
, “
Structure, electronic, and vibrational properties of glassy Ga11Ge11Te78: Experimentally constrained density functional study
,”
Phys. Rev. B
86
,
094108
(
2012
).
17.
J.
Skelton
,
K.
Kobayashi
,
Y.
Sutou
, and
S.
Elliott
, “
Origin of the unusual reflectance and density contrasts in the phase-change material Cu2GeTe3
,”
Appl. Phys. Lett.
102
,
224105
(
2013
).
18.
N.-K.
Chen
,
X.-B.
Li
,
X.-P.
Wang
,
M.-J.
Xia
,
S.-Y.
Xie
,
H.-Y.
Wang
,
Z.
Song
,
S.
Zhang
, and
H.-B.
Sun
, “
Origin of high thermal stability of amorphous Ge1Cu2Te3 alloy: A significant Cu-bonding reconfiguration modulated by Te lone-pair electrons for crystallization
,”
Acta Mater.
90
,
88
93
(
2015
).
19.
S.
Caravati
,
M.
Bernasconi
, and
M.
Parrinello
, “
First-principles study of liquid and amorphous Sb2Te3
,”
Phys. Rev. B
81
,
014201
(
2010
).
20.
X.-P.
Wang
,
N.-K.
Chen
,
X.-B.
Li
,
Y.
Cheng
,
X.
Liu
,
M.-J.
Xia
,
Z.
Song
,
X.
Han
,
S.
Zhang
, and
H.-B.
Sun
, “
Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: Insights from first principles
,”
Phys. Chem. Chem. Phys.
16
,
10810
10815
(
2014
).
21.
F.
Rao
,
K.
Ding
,
Y.
Zhou
,
Y.
Zheng
,
M.
Xia
,
S.
Lv
,
Z.
Song
,
S.
Feng
,
I.
Ronneberger
,
R.
Mazzarello
 et al., “
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
,”
Science
358
,
1423
1427
(
2017
).
22.
W.
Zhang
,
R.
Mazzarello
,
M.
Wuttig
, and
E.
Ma
, “
Designing crystallization in phase-change materials for universal memory and neuro-inspired computing
,”
Nat. Rev. Mater.
4
,
150
168
(
2019
).
23.
D.
Dragoni
,
S.
Gabardi
, and
M.
Bernasconi
, “
First-principles study of the liquid and amorphous phases of In2Te3
,”
Phys. Rev. Mater.
1
,
035603
(
2017
).
24.
H.
Zhu
,
K.
Chen
,
Z.
Ge
,
H.
Xu
,
Y.
Su
,
J.
Yin
,
Y.
Xia
, and
Z.
Liu
, “
Binary semiconductor In2Te3 for the application of phase-change memory device
,”
J. Mater. Sci.
45
,
3569
3574
(
2010
).
25.
C.-S.
Oh
and
D. N.
Lee
, “
Thermodynamic assessments of the In–Te and Al–Te systems
,”
Calphad
17
,
175
187
(
1993
).
26.
M.
Nassary
,
M.
Dongal
,
M.
Gerges
, and
M.
Sebage
, “
Study of the electrical conductivity and thermoelectric power of In2Te5 single crystals
,”
Phys. Status Solidi (A)
199
,
464
470
(
2003
).
27.
A. V.
Sanchela
,
A. D.
Thakur
, and
C.
Tomy
, “
Anisotropic thermal conductivity and thermopower of In2Te5 single crystal
,”
AIP Conf. Proc.
1591
,
1392
1394
(
2014
).
28.
M.
Krack
and
M.
Parrinello
, in
High Performance Computing in Chemistry
, edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
2004
), Vol. 25, pp.
29
51
.
29.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
30.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
31.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
32.
S.
Caravati
,
M.
Bernasconi
,
T.
Kühne
,
M.
Krack
, and
M.
Parrinello
, “
First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects
,”
J. Phys.: Condens. Matter
21
,
255501
(
2009
).
33.
O. A.
Vydrov
and
T.
van Voorhis
, “
Nonlocal van der Waals density functional: The simpler the better
,”
J. Chem. Phys.
133
,
244103
(
2010
).
34.
R.
Sabatini
,
T.
Gorni
, and
S.
De Gironcoli
, “
Nonlocal van der Waals density functional made simple and efficient
,”
Phys. Rev. B
87
,
041108
(
2013
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
36.
T. D.
Kühne
,
M.
Krack
,
F. R.
Mohamed
, and
M.
Parrinello
, “
Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics
,”
Phys. Rev. Lett.
98
,
066401
(
2007
).
37.
T. D.
Kühne
,
M.
Krack
, and
M.
Parrinello
, “
Static and dynamical properties of liquid water from first principles by a Novel Car-Parrinello-like approach
,”
J. Chem. Theory Comput.
5
,
235
241
(
2009
).
38.
H.
Thurn
and
J.
Ruska
, “
Density measurements of melts of the binary systems in-Te, Sn–Te and Ag–Te up to 1000 C
,”
Z. Anorg. Allg. Chem.
426
,
237
246
(
1976
).
39.
E. G.
Grochowski
,
D. R.
Mason
,
G. A.
Schmitt
, and
P. H.
Smith
, “
The phase diagram for the binary system indium-tellurium and electrical properties of In3Te5
,”
J. Phys. Chem. Solids
25
,
551
558
(
1964
).
40.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
,
224106
(
2006
).
41.
S.
Gabardi
,
S.
Caravati
,
J. H.
Los
,
T. D.
Kühne
, and
M.
Bernasconi
, “
Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds
,”
J. Chem. Phys.
144
,
204508
(
2016
).
42.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
43.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
44.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
45.
Y.
Kawakita
,
S.
Takeda
,
M.
Inui
,
S.
Hosokawa
, and
K.
Maruyama
, “
Structure and dynamical properties of liquid In2Te3
,”
J. Non-Cryst. Solids
312
,
366
370
(
2002
).
46.
D. A.
Keen
, “
A comparison of various commonly used correlation functions for describing total scattering
,”
J. Appl. Crystallogr.
34
,
172
177
(
2001
).
47.
D. T.
Cromer
and
J. B.
Mann
, “
X-ray scattering factors computed from numerical Hartree–Fock wave functions
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
24
,
321
324
(
1968
).
48.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
, “
Higher-accuracy van der Waals density functional
,”
Phys. Rev. B
82
,
081101
(
2010
).
49.
R.
Goto
,
F.
Shimojo
, and
K.
Hoshino
, “
Temperature dependence of the microscopic structure of liquid In2Te3: Ab initio molecular-dynamics simulations
,”
J. Phys. Soc. Jpn.
72
,
320
324
(
2003
).
50.
H.
Sutherland
,
J.
Hogg
, and
P.
Walton
, “
Indium polytelluride In2Te5
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
32
,
2539
2541
(
1976
).
51.
P.
Walton
,
H.
Sutherland
, and
J.
Hogg
, “
Indium polytelluride In2Te5 (ii)
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
34
,
41
45
(
1978
).
52.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al., “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
53.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
(
1991
).
54.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
55.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
56.
A. P.
Cracknell
and
B.
Davies
,
General Introduction and Tables of Irreducible Representations of Space Groups
(
IFI/Plenum
,
1979
).
57.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
(
2001
).
58.
G. C.
Sosso
,
S.
Caravati
,
R.
Mazzarello
, and
M.
Bernasconi
, “
Raman spectra of cubic and amorphous Ge2Sb2Te5 from first principles
,”
Phys. Rev. B
83
,
134201
(
2011
).
59.
T. H.
Lee
and
S. R.
Elliott
, “
The relation between chemical bonding and ultrafast crystal growth
,”
Adv. Mater.
29
,
1700814
(
2017
).
60.
J.
Orava
,
A. L.
Greer
,
B.
Gholipour
,
D.
Hewak
, and
C.
Smith
, “
Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry
,”
Nat. Mater.
11
,
279
(
2012
).
61.
G. C.
Sosso
,
J.
Behler
, and
M.
Bernasconi
, “
Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials
,”
Phys. Status Solidi (B)
249
,
1880
1885
(
2012
).
62.
B.
Chen
,
D.
de Wal
,
G. H.
ten Brink
,
G.
Palasantzas
, and
B. J.
Kooi
, “
Resolving crystallization kinetics of GeTe phase-change nanoparticles by ultrafast calorimetry
,”
Cryst. Growth Des.
18
,
1041
1046
(
2017
).
63.
W.
Wełnic
,
M.
Wuttig
,
S.
Botti
, and
L.
Reining
, “
Local atomic order and optical properties in amorphous and laser-crystallized GeTe
,”
C. R. Phys.
10
,
514
527
(
2009
).
64.
S.
Caravati
,
M.
Bernasconi
, and
M.
Parrinello
, “
First principles study of the optical contrast in phase change materials
,”
J. Phys.: Condens. Matter
22
,
315801
(
2010
).
65.
S.
Wei
,
G. J.
Coleman
,
P.
Lucas
, and
C. A.
Angell
, “
Glass transitions, semiconductor-metal transitions, and fragilities in Ge–V–Te (V = As, Sb) liquid alloys: The difference one element can make
,”
Phys. Rev. Appl.
7
,
034035
(
2017
).
66.
V. A.
Alekseev
,
A. A.
Andreev
, and
M.
Sadovski
̆
ı, “
Semiconductor–metal transition in liquid semiconductors
,”
Sov. Phys.–Usp.
23
,
551
(
1980
).
67.
S.
Hosokawa
,
Y.
Sakaguchi
,
H.
Hiasa
, and
K.
Tamura
, “
Optical absorption spectra of liquid As2S3 and As2Se3 over a wide temperature range
,”
J. Phys.: Condens. Matter
3
,
6673
(
1991
).
68.
S.
Hosokawa
,
Y.
Sakaguchi
, and
K.
Tamura
, “
X-ray diffraction measurements for liquid As2Se3 up to the semiconductor-metal transition region
,”
J. Non-Cryst. Solids
150
,
35
39
(
1992
).
69.
Y.
Tsuchiya
, “
Thermodynamic evidence for a structural transition of liquid Te in the supercooled region
,”
J. Phys.: Condens. Matter
3
,
3163
(
1991
).
70.
Y.
Tsuchiya
, “
The velocity of sound in the liquid In-Te alloys
,”
J. Phys. C: Solid State Phys.
21
,
5473
(
1988
).
71.
R.
Goto
,
F.
Shimojo
, and
K.
Hoshino
, “
The semiconductor–metal transition in the liquid In2Te3 studied by ab initio molecular-dynamics simulations
,”
J. Phys. Soc. Jpn.
73
,
956
963
(
2004
).
72.
P.
Zalden
,
F.
Quirin
,
M.
Schumacher
,
J.
Siegel
,
S.
Wei
,
A.
Koc
,
M.
Nicoul
,
M.
Trigo
,
P.
Andreasson
,
H.
Enquist
,
M. J.
Shu
,
T.
Pardini
,
M.
Chollet
,
D.
Zhu
,
H.
Lemke
,
I.
Ronneberger
,
J.
Larsson
,
A. M.
Lindenberg
,
H. E.
Fischer
,
S.
Hau-Riege
,
D. A.
Reis
,
R.
Mazzarello
,
M.
Wuttig
, and
K.
Sokolowski-Tinten
, “
Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials
,”
Science
364
,
1062
1067
(
2019
), https://science.sciencemag.org/content/364/6445/1062.full.pdf.
73.
C.
Bichara
,
A.
Pellegatti
, and
J.-P.
Gaspard
, “
Properties of liquid group-V elements: A numerical tight-binding simulation
,”
Phys. Rev. B
47
,
5002
5007
(
1993
).
74.
D.
Franzblau
, “
Computation of ring statistics for network models of solids
,”
Phys. Rev. B
44
,
4925
(
1991
).
75.
Y. F.
Yuan
,
L.
Cheng
,
Y. P.
Li
,
C. M.
Liu
,
L. H.
Yuan
,
X. R.
Cao
, and
J.
Li
, “
Thickness effect on the physical properties of RF sputtered In2Te5 thin films
,”
Chalcogenide Lett.
14
,
439
446
(
2017
), see http://www.chalcogen.ro/439_YuanYF.pdf.

Supplementary Material

You do not currently have access to this content.