The GW approximation to many-body perturbation theory is a reliable tool for describing charged electronic excitations, and it has been successfully applied to a wide range of extended systems for several decades using a plane-wave basis. However, the GW approximation has been used to test limited spectral properties of a limited set of finite systems (e.g., frontier orbital energies of closed-shell sp molecules) only for about a decade using a local-orbital basis. Here, we calculate the quasiparticle spectra of closed- and open-shell molecular anions with partially and completely filled 3d shells (shallow and deep 3d states, respectively), ScO, TiO, CuO, and ZnO, using various levels of GW theory, and compare them to experiments to evaluate the performance of the GW approximation on the electronic structure of small molecules containing 3d transition metals. We find that the G-only eigenvalue self-consistent GW scheme with W fixed to the PBE level (GnW0@PBE), which gives the best compromise between accuracy and efficiency for solids, also gives good results for both localized (d) and delocalized (sp) states of 3d-transition-metal oxide molecules. The success of GnW0@PBE in predicting electronic excitations in these systems reasonably well is likely due to the fortuitous cancellation effect between the overscreening of the Coulomb interaction by PBE and the underscreening by the neglect of vertex corrections. Together with the absence of the self-consistent field convergence error (e.g., spin contamination in open-shell systems) and the GW multisolution issue, the GnW0@PBE scheme gives the possibility to predict the electronic structure of complex real systems (e.g., molecule-solid and sp-d hybrid systems) accurately and efficiently.

1.
F.
Bruneval
and
M.
Gatti
, “
Quasiparticle self-consistent GW method for the spectral properties of complex materials
,” in
First Principles Approaches to Spectroscopic Properties of Complex Materials
, edited by
C.
Di Valentin
,
S.
Botti
, and
M.
Cococcioni
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2014
), pp.
99
135
.
2.
L.
Reining
, “
The GW approximation: Content, successes and limitations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1344
(
2018
).
3.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
, “
Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions
,”
New J. Phys.
14
,
053020
(
2012
).
4.
F.
Bruneval
and
M. A. L.
Marques
, “
Benchmarking the starting points of the GW approximation for molecules
,”
J. Chem. Theory Comput.
9
,
324
329
(
2013
).
5.
E.
Pavarini
,
E.
Koch
,
J.
van den Brink
, and
G.
Sawatzky
,
Quantum Materials: Experiments and Theory, Modeling and Simulation
(
Forschungszentrum Jülich
,
Jülich
,
2016
), Vol. 6, p.
420
.
6.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
, “
MOLGW 1: Many-body perturbation theory software for atoms, molecules, and clusters
,”
Comput. Phys. Commun.
208
,
149
161
(
2016
).
7.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
, “
First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications
,”
Phys. Rev. B
83
,
115103
(
2011
).
8.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
, “
The GW-method for quantum chemistry applications: Theory and implementation
,”
J. Chem. Theory Comput.
9
,
232
246
(
2013
).
9.
J.
Wilhelm
,
M.
Del Ben
, and
J.
Hutter
, “
GW in the Gaussian and plane waves scheme with application to linear acenes
,”
J. Chem. Theory Comput.
12
,
3623
3635
(
2016
).
10.
G. L.
Gutsev
,
B. K.
Rao
, and
P.
Jena
, “
Electronic structure of the 3d metal monoxide anions
,”
J. Phys. Chem. A
104
,
5374
5379
(
2000
).
11.
J. M.
Gonzales
,
R. A.
King
, and
H. F.
Schaefer
, “
Analyses of the ScO and ScO2 photoelectron spectra
,”
J. Chem. Phys.
113
,
567
572
(
2000
).
12.
K. N.
Kudin
and
G. E.
Scuseria
, “
Converging self-consistent field equations in quantum chemistry – recent achievements and remaining challenges
,”
ESAIM: Math. Modell. Numer. Anal.
41
,
281
296
(
2007
).
13.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
, “
GW100: Benchmarking G0W0 for molecular systems
,”
J. Chem. Theory Comput.
11
,
5665
5687
(
2015
).
14.
F.
Caruso
,
M.
Dauth
,
M. J.
van Setten
, and
P.
Rinke
, “
Benchmark of GW approaches for the GW100 test set
,”
J. Chem. Theory Comput.
12
,
5076
5087
(
2016
).
15.
E.
Maggio
,
P.
Liu
,
M. J.
van Setten
, and
G.
Kresse
, “
GW100: A plane wave perspective for small molecules
,”
J. Chem. Theory Comput.
13
,
635
648
(
2017
).
16.
M.
Govoni
and
G.
Galli
, “
GW100: Comparison of methods and accuracy of results obtained with the WEST code
,”
J. Chem. Theory Comput.
14
,
1895
1909
(
2018
).
17.
M.
Shishkin
and
G.
Kresse
, “
Self-consistent GW calculations for semiconductors and insulators
,”
Phys. Rev. B
75
,
235102
(
2007
).
18.
F.
Fuchs
,
J.
Furthmüller
,
F.
Bechstedt
,
M.
Shishkin
, and
G.
Kresse
, “
Quasiparticle band structure based on a generalized Kohn-Sham scheme
,”
Phys. Rev. B
76
,
115109
(
2007
).
19.
J.
Klimeš
,
M.
Kaltak
, and
G.
Kresse
, “
Predictive GW calculations using plane waves and pseudopotentials
,”
Phys. Rev. B
90
,
075125
(
2014
).
20.
M.
Grumet
,
P.
Liu
,
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
, “
Beyond the quasiparticle approximation: Fully self-consistent GW calculations
,”
Phys. Rev. B
98
,
155143
(
2018
).
21.
S.
Körbel
,
P.
Boulanger
,
I.
Duchemin
,
X.
Blase
,
M. A. L.
Marques
, and
S.
Botti
, “
Benchmark many-body GW and Bethe–Salpeter calculations for small transition metal molecules
,”
J. Chem. Theory Comput.
10
,
3934
3943
(
2014
).
22.
F.
Kaplan
,
M. E.
Harding
,
C.
Seiler
,
F.
Weigend
,
F.
Evers
, and
M. J.
van Setten
, “
Quasi-particle self-consistent GW for molecules
,”
J. Chem. Theory Comput.
12
,
2528
2541
(
2016
).
23.
C.
Rostgaard
,
K. W.
Jacobsen
, and
K. S.
Thygesen
, “
Fully self-consistent GW calculations for molecules
,”
Phys. Rev. B
81
,
085103
(
2010
).
24.
H.
Wu
and
L.-S.
Wang
, “
Photoelectron spectroscopy and electronic structure of ScOn(n = 1–4) and YOn(n = 1–5): Strong electron correlation effects in ScOand YO
,”
J. Phys. Chem. A
102
,
9129
9135
(
1998
).
25.
H.
Wu
and
L.
Wang
, “
Electronic structure of titanium oxide clusters: TiOy (y = 1–3) and (TiO2)n (n = 1–4)
,”
J. Chem. Phys.
107
,
8221
8228
(
1997
).
26.
H.
Wu
,
S. R.
Desai
, and
L.-S.
Wang
, “
Chemical bonding between Cu and oxygen–copper oxides vs O2 complexes: A study of CuOx (x = 0–6) species by anion photoelectron spectroscopy
,”
J. Phys. Chem. A
101
,
2103
2111
(
1997
).
27.
V. D.
Moravec
,
S. A.
Klopcic
,
B.
Chatterjee
, and
C. C.
Jarrold
, “
The electronic structure of ZnO and ZnF determined by anion photoelectron spectroscopy
,”
Chem. Phys. Lett.
341
,
313
318
(
2001
).
28.
F.
Bruneval
,
N.
Vast
,
L.
Reining
,
M.
Izquierdo
,
F.
Sirotti
, and
N.
Barrett
, “
Exchange and correlation effects in electronic excitations of Cu2O
,”
Phys. Rev. Lett.
97
,
267601
(
2006
).
29.
L. Y.
Isseroff
and
E. A.
Carter
, “
Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O
,”
Phys. Rev. B
85
,
235142
(
2012
).
30.
M. L.
Tiago
and
J. R.
Chelikowsky
, “
Optical excitations in organic molecules, clusters, and defects studied by first-principles Green’s function methods
,”
Phys. Rev. B
73
,
205334
(
2006
).
31.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
, “
Generalized Kohn-Sham schemes and the band-gap problem
,”
Phys. Rev. B
53
,
3764
3774
(
1996
).
32.
T.
Sander
,
E.
Maggio
, and
G.
Kresse
, “
Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization
,”
Phys. Rev. B
92
,
045209
(
2015
).
33.
Y.-M.
Byun
and
C. A.
Ullrich
, “
Excitons in solids from time-dependent density-functional theory: Assessing the Tamm-Dancoff approximation
,”
Computation
5
,
9
(
2017
).
34.
D.
Golze
,
J.
Wilhelm
,
M. J.
van Setten
, and
P.
Rinke
, “
Core-level binding energies from GW: An efficient full-frequency approach within a localized basis
,”
J. Chem. Theory Comput.
14
,
4856
4869
(
2018
).
35.
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
, “
Evaluation of s2 in density functional theory
,”
J. Chem. Phys.
126
,
214104
(
2007
).
36.
A. S.
Menon
and
L.
Radom
, “
Consequences of spin contamination in unrestricted calculations on open-shell species: Effect of Hartree–Fock and Møller–Plesset contributions in hybrid and double-hybrid density functional theory approaches
,”
J. Phys. Chem. A
112
,
13225
13230
(
2008
).
37.
J. G.
Hill
and
J. A.
Platts
, “
Auxiliary basis sets for density fitting–MP2 calculations: Nonrelativistic triple-ζ all-electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
128
,
044104
(
2008
).
38.
J. G.
Hill
and
K. A.
Peterson
, “
Explicitly correlated coupled cluster calculations for molecules containing group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements: Optimized complementary auxiliary basis sets for valence and core–valence basis sets
,”
J. Chem. Theory Comput.
8
,
518
526
(
2012
).
39.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
,
5390
5413
(
1986
).
40.
M.
Véril
,
P.
Romaniello
,
J. A.
Berger
, and
P.-F.
Loos
, “
Unphysical discontinuities in GW methods
,”
J. Chem. Theory Comput.
14
,
5220
5228
(
2018
.
41.
X.
Blase
,
P.
Boulanger
,
F.
Bruneval
,
M.
Fernandez-Serra
, and
I.
Duchemin
, “
GW and Bethe-Salpeter study of small water clusters
,”
J. Chem. Phys.
144
,
034109
(
2016
).
42.
C. L.
Collins
,
K. G.
Dyall
, and
H. F.
Schaefer
, “
Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods
,”
J. Chem. Phys.
102
,
2024
2031
(
1995
).
43.
K. A.
Peterson
and
C.
Puzzarini
, “
Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements
,”
Theor. Chem. Acc.
114
,
283
296
(
2005
).
44.
P.
Pyykkö
and
J. P.
Desclaux
, “
Relativity and the periodic system of elements
,”
Acc. Chem. Res.
12
,
276
281
(
1979
).
45.
P.
Pyykkö
, “
Relativistic effects in structural chemistry
,”
Chem. Rev.
88
,
563
594
(
1988
).
46.
P.
Pyykkö
, “
Relativistic effects in chemistry: More common than you thought
,”
Annu. Rev. Phys. Chem.
63
,
45
64
(
2012
).
47.
P. S.
Bagus
,
Y. S.
Lee
, and
K. S.
Pitzer
, “
Effects of relativity and of the lanthanide contraction on the atoms from hafnium to bismuth
,”
Chem. Phys. Lett.
33
,
408
411
(
1975
).
48.
H.
Tatewaki
,
S.
Yamamoto
, and
Y.
Hatano
, “
Relativistic effects in the electronic structure of atoms
,”
ACS Omega
2
,
6072
6080
(
2017
.
49.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
, “
Explicitly correlated electrons in molecules
,”
Chem. Rev.
112
,
4
74
(
2012
).
50.
F.
Hüser
,
T.
Olsen
, and
K. S.
Thygesen
, “
Quasiparticle GW calculations for solids, molecules, and two-dimensional materials
,”
Phys. Rev. B
87
,
235132
(
2013
).
51.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
, “
Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
,”
J. Chem. Theory Comput.
12
,
2834
2842
(
2016
).
52.
L.
Hung
,
F.
Bruneval
,
K.
Baishya
, and
S.
Öğüt
, “
Benchmarking the GW approximation and Bethe-Salpeter equation for groups Ib and IIb atoms and monoxides
,”
J. Chem. Theory Comput.
13
,
2135
2146
(
2017
).
53.
B.
Shi
,
S.
Weissman
,
F.
Bruneval
,
L.
Kronik
, and
S.
Öğüt
, “
Photoelectron spectra of copper oxide cluster anions from first principles methods
,”
J. Chem. Phys.
149
,
064306
(
2018
).
54.
L.
Hung
,
F.
Bruneval
,
K.
Baishya
, and
S.
Öğüt
, “
Correction to benchmarking the GW approximation and Bethe–Salpeter equation for groups Ib and IIb monoxides
,”
J. Chem. Theory Comput.
13
,
5820
5821
(
2017
).
55.
L.
Hedin
, “
On correlation effects in electron spectroscopies and the GW approximation
,”
J. Phys.: Condens. Matter
11
,
R489
R528
(
1999
).
56.
J. S.
Zhou
,
J. J.
Kas
,
L.
Sponza
,
I.
Reshetnyak
,
M.
Guzzo
,
C.
Giorgetti
,
M.
Gatti
,
F.
Sottile
,
J. J.
Rehr
, and
L.
Reining
, “
Dynamical effects in electron spectroscopy
,”
J. Chem. Phys.
143
,
184109
(
2015
).
57.
F.
Bruneval
, “
Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies
,”
J. Chem. Phys.
136
,
194107
(
2012
).
58.
P.
Koval
,
D.
Foerster
, and
D.
Sánchez-Portal
, “
Fully self-consistent GW and quasiparticle self-consistent GW for molecules
,”
Phys. Rev. B
89
,
155417
(
2014
).
59.
P.
Liao
and
E. A.
Carter
, “
Testing variations of the GW approximation on strongly correlated transition metal oxides: Hematite (α-Fe2O3) as a benchmark
,”
Phys. Chem. Chem. Phys.
13
,
15189
15199
(
2011
).
60.
K.
Momma
and
F.
Izumi
, “
VESTA: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
,
653
658
(
2008
).
61.
B.
Dai
,
K.
Deng
,
J.
Yang
, and
Q.
Zhu
, “
Excited states of the 3d transition metal monoxides
,”
J. Chem. Phys.
118
,
9608
9613
(
2003
).
62.
A. J.
Bridgeman
and
J.
Rothery
, “
Periodic trends in the diatomic monoxides and monosulfides of the 3d transition metals
,”
J. Chem. Soc., Dalton Trans.
29
,
211
218
(
2000
).
63.
E.
Miliordos
and
A.
Mavridis
, “
Electronic structure and bonding of the early 3d-transition metal diatomic oxides and their ions: ScO0,±, TiO0,±, CrO0,±, and MnO0,±
,”
J. Phys. Chem. A
114
,
8536
8572
(
2010
).
64.
C. W.
Bauschlicher
and
H.
Partridge
, “
A comparison of ZnO and ZnO
,”
J. Chem. Phys.
109
,
8430
8434
(
1998
).
65.
M. B.
Walsh
,
R. A.
King
, and
H. F.
Schaefer
, “
The structures, electron affinities, and energetic stabilities of TiOn and TiOn (n = 1 − 3)
,”
J. Chem. Phys.
110
,
5224
5230
(
1999
).
66.
H.
Xian
,
Z.
Cao
,
X.
Xu
,
X.
Lu
, and
Q.
Zhang
, “
Theoretical study of low-lying electronic states of CuO and CuO
,”
Chem. Phys. Lett.
326
,
485
493
(
2000
).
67.
A.
Daoudi
,
A. T.
Benjelloun
,
J.
Flament
, and
G.
Berthier
, “
Potential energy curves and electronic structure of copper nitrides CuN and CuN+versus CuO and CuO+
,”
J. Mol. Spectrosc.
194
,
8
16
(
1999
).
68.
P. S.
Bagus
,
C. J.
Nelin
, and
C. W.
Bauschlicher
, “
On the low-lying states of CuO
,”
J. Chem. Phys.
79
,
2975
2981
(
1983
).
69.
G. L.
Gutsev
,
L.
Andrews
, and
C. W.
Bauschlicher
, Jr.
, “
Similarities and differences in the structure of 3d-metal monocarbides and monoxides
,”
Theor. Chem. Acc.
109
,
298
308
(
2003
).
70.
C. A.
Fancher
,
H. L.
de Clercq
,
O. C.
Thomas
,
D. W.
Robinson
, and
K. H.
Bowen
, “
Zinc oxide and its anion: A negative ion photoelectron spectroscopic study
,”
J. Chem. Phys.
109
,
8426
8429
(
1998
).
71.
M.
Strange
,
C.
Rostgaard
,
H.
Häkkinen
, and
K. S.
Thygesen
, “
Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions
,”
Phys. Rev. B
83
,
115108
(
2011
).
72.
N.
Marom
,
F.
Caruso
,
X.
Ren
,
O. T.
Hofmann
,
T.
Körzdörfer
,
J. R.
Chelikowsky
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
, “
Benchmark of GW methods for azabenzenes
,”
Phys. Rev. B
86
,
245127
(
2012
).

Supplementary Material

You do not currently have access to this content.