First-principles calculations have been performed to study the effect of cation replacement with methylammonium (MA+), Cs+, and Rb+ on the properties of formamidinium lead iodide (FAPbI3) perovskite. It is found that these dopants could improve the stability of the desired α phase of FAPbI3 at reduced temperature by lowering the transition temperature between the perovskite cubic α phase and nonperovskite hexagonal δ phase. Interestingly, the optical absorption properties and the effective masses of holes of FAPbI3 perovskite are only slightly affected. The nature of the improvement of the phase stability resulting from the cation replacement is revealed. However, the calculated mixing energies indicate that these multication materials still suffer long-term instability. Our results provide theoretical guidance for improving current multication engineering strategies or even developing new approaches.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
, “
The emergence of perovskite solar cells
,”
Nat. Photonics
8
,
506
514
(
2014
).
2.
See https://www.nrel.gov/pv/cell-efficiency.html for NREL Solar Cell Efficiency Chart.
3.
J.-P.
Correa-Baena
,
M.
Saliba
,
T.
Buonassisi
,
M.
Grätzel
,
A.
Abate
,
W.
Tress
, and
A.
Hagfeldt
, “
Promises and challenges of perovskite solar cells
,”
Science
358
,
739
744
(
2017
).
4.
M. L.
Petrus
,
J.
Schlipf
,
C.
Li
,
T. P.
Gujar
,
N.
Giesbrecht
,
P.
Müller-Buschbaum
,
M.
Thelakkat
,
T.
Bein
,
S.
Hüttner
, and
P.
Docampo
, “
Capturing the sun: A review of the challenges and perspectives of perovskite solar cells
,”
Adv. Energy Mater.
7
,
1700264
(
2017
).
5.
G. P.
Nagabhushana
,
R.
Shivaramaiah
, and
A.
Navrotsky
, “
Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
7717
7721
(
2016
).
6.
J.-W.
Lee
,
D.-H.
Kim
,
H.-S.
Kim
,
S.-W.
Seo
,
S. M.
Cho
, and
N. G.
Park
, “
Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell
,”
Adv. Energy Mater.
5
,
1501310
(
2015
).
7.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p-n junction solar cells
,”
J. Appl. Phys.
32
,
510
519
(
1961
).
8.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
, “
Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties
,”
Inorg. Chem.
52
,
9019
9038
(
2013
).
9.
M. T.
Weller
,
O. J.
Weber
,
J. M.
Frost
, and
A.
Walsh
, “
Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K
,”
J. Phys. Chem. Lett.
6
,
3209
3212
(
2015
).
10.
T. R.
Chen
,
B. J.
Foley
,
C. W.
Park
,
C. M.
Brown
,
L. W.
Harriger
,
J.
Lee
,
J.
Ruff
,
M.
Yoon
,
J. J.
Choi
, and
S.-H.
Lee
, “
Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite
,”
Sci. Adv.
2
,
e1601650
(
2016
).
11.
N. J.
Jeon
,
J. H.
Noh
,
W. S.
Yang
,
Y. C.
Kim
,
S. C.
Ryu
,
J. W.
Seo
, and
S. L.
Seok
, “
Compositional engineering of perovskite materials for high-performance solar cells
,”
Nature
517
,
476
480
(
2015
).
12.
N.
Pellet
,
P.
Gao
,
G.
Gregori
,
T. Y.
Yang
,
M. K.
Nazeeruddin
,
J.
Maier
, and
M.
Gratzel
, “
Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting
,”
Angew. Chem., Int. Ed.
53
,
3151
3157
(
2014
).
13.
X.
Li
,
D. Q.
Bi
,
C. Y.
Yi
,
J. D.
Decoppet
,
J. S.
Luo
,
S. M.
Zakeeruddin
,
A.
Hagfeldt
, and
M.
Gratzel
, “
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
,”
Science
353
,
58
62
(
2016
).
14.
Z.
Li
,
M. J.
Yang
,
J. S.
Park
,
S. H.
Wei
,
J. J.
Berry
, and
K.
Zhu
, “
Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys
,”
Chem. Mater.
28
,
284
292
(
2016
).
15.
D. P.
McMeekin
,
G.
Sadoughi
,
W.
Rehman
,
G. E.
Eperon
,
M.
Saliba
,
M. T.
Hörantner
,
A.
Haghighirad
,
N.
Sakai
,
L.
Korte
,
B.
Rech
 et al, “
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
,”
Science
351
,
151
155
(
2016
).
16.
X.
Xia
,
W. Y.
Wu
,
H. C.
Li
,
B.
Zheng
,
Y. B.
Xue
,
J.
Xu
,
D. W.
Zhang
,
C. X.
Gao
, and
X. Z.
Liu
, “
Spray reaction prepared FA1−xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability
,”
RSC Adv.
6
,
14792
14798
(
2016
).
17.
C. Y.
Yi
,
J. S.
Luo
,
S.
Meloni
,
A.
Boziki
,
N.
Ashari-Astani
,
C.
Gratzel
,
S. M.
Zakeeruddin
,
U.
Rothlisberger
, and
M.
Gratzel
, “
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells
,”
Energy Environ. Sci.
9
,
656
662
(
2016
).
18.
Y. H.
Park
,
I.
Jeong
,
S.
Bae
,
H. J.
Son
,
P.
Lee
,
J.
Lee
,
C. H.
Lee
, and
M. J.
Ko
, “
Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells
,”
Adv. Funct. Mater.
27
,
1605988
16059815
(
2017
).
19.
W. S.
Yang
,
B.-W.
Park
,
E. H.
Jung
,
N. J.
Jeon
,
Y. C.
Kim
,
D. U.
Lee
,
S. S.
Shin
,
J. W.
Seo
,
E. K.
Kim
,
J.-H.
Noh
, and
S. I.
Seok
, “
Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
,”
Science
356
,
1376
1379
(
2017
).
20.
S.-H.
Turren-Cruz
,
A.
Hagfeldt
, and
M.
Saliba
, “
Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
,”
Science
362
,
449
453
(
2018
).
21.
Q.
Zhao
,
A.
Hazarika
,
X.
Chen
,
S. P.
Harvey
,
B. W.
Larson
,
G. R.
Teeter
,
J.
Liu
,
T.
Song
,
C.
Xiao
,
L.
Shaw
 et al, “
High efficiency perovskite quantum dot solar cells with charge separating heterostructure
,”
Nat. Commun.
10
,
2842
(
2019
).
22.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldtd
 et al, “
Cesium-containing triple cation perovskite solarcells: Improved stability, reproducibility and highefficiency
,”
Energy Environ. Sci.
9
,
1989
1992
(
2016
).
23.
A.
Binek
,
F. C.
Hanusch
,
P.
Docampo
, and
T.
Bein
, “
Stabilization of the trigonal high-temperature phase of formamidinium lead iodide
,”
J. Phys. Chem. Lett.
6
,
1249
1253
(
2015
).
24.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
25.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
27.
V.
Wang
and
N.
Xu
, VASPKIT: A pre- and post-processing program for the VASP code,
2013
, http://vaspkit.sourceforge.net.
28.
J.
Even
,
L.
Pedesseau
,
J.-M.
Jancu
, and
C.
Katan
, “
Importance of spin−orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications
,”
J. Phys. Chem. Lett.
4
,
2999
3005
(
2013
).
29.
E.
Mosconi
,
A.
Amat
,
M. K.
Nazeeruddin
,
M.
Gratzel
, and
F.
De Angelis
, “
First-principles modeling of mixed halide organometal perovskites for photovoltaic applications
,”
J. Phys. Chem. C
117
,
13902
13913
(
2013
).
30.
R. E.
Brandt
,
V.
Stevanovic
,
D. S.
Ginley
, and
T.
Buonassisi
, “
Identifying defect-tolerant semiconductors with high minority carrier lifetimes: Beyond hybrid lead halide perovskites
,”
MRS Commun.
5
,
265
275
(
2015
).
31.
M.
Netsianda
,
P. E.
Ngoepe
,
C. R. A.
Catlow
, and
S. M.
Woodley
, “
The displacive phase transition of vanadium dioxide and the effect of doping with tungsten
,”
Chem. Mater.
20
,
1764
1772
(
2008
).
32.
J. J.
Zhang
,
H. Y.
He
,
Y.
Xie
, and
B. C.
Pan
, “
Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2
,”
J. Chem. Phys.
138
,
114705
(
2013
).
33.
J. J.
Zhang
,
L.
Yang
,
Y.
Zhong
,
H. Q.
Hao
,
M.
Yang
, and
R. Y.
Liu
, “
Improved phase stability of the CsPbI3 perovskite via organic cation doping
,”
Phys. Chem. Chem. Phys.
21
,
11175
11180
(
2019
).
34.
G.
Giorgi
,
J.-I.
Fujisawa
,
H.
Segawa
, and
K.
Yamashita
, “
Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis
,”
J. Phys. Chem. Lett.
4
,
4213
4216
(
2013
).
You do not currently have access to this content.