Efficient quantum-chemical methods that are able to describe intermolecular charge transfer are crucial for modeling organic semiconductors. However, the correct description of intermolecular charge transfer with density-functional theory (DFT) is hampered by the fractional charge error of approximate exchange-correlation (xc) functionals. Here, we investigate the charge transfer induced by an external electric field in a tetrathiafulvalene–tetracyanoquinodimethane (TTF–TCNQ) complex as a test case. For this seemingly simple model system, a supermolecular DFT treatment fails with most conventional xc functionals. Here, we present an extension of subsystem DFT to subsystems with a fractional number of electrons. We show that within such a framework, it becomes possible to overcome the fractional charge error by enforcing the correct dependence of each subsystem’s total energy on the subsystem’s fractional charge. Such a subsystem DFT approach allows for a correct description of the intermolecular charge transfer in the TTF–TCNQ model complex. The approach presented here can be generalized to larger molecular aggregates and will thus allow for modeling organic semiconductor materials accurately and efficiently.

1.
C.
Wang
,
H.
Dong
,
L.
Jiang
, and
W.
Hu
,
Chem. Soc. Rev.
47
,
422
(
2018
).
2.
B.
Kippelen
and
J.-L.
Brédas
,
Energy Environ. Sci.
2
,
251
(
2009
).
3.
A. W.
Hains
,
Z.
Liang
,
M. A.
Woodhouse
, and
B. A.
Gregg
,
Chem. Rev.
110
,
6689
(
2010
).
4.
Q.
An
,
F.
Zhang
,
J.
Zhang
,
W.
Tang
,
Z.
Deng
, and
B.
Hu
,
Energy Environ. Sci.
9
,
281
(
2016
).
5.
J.
Hou
,
O.
Inganäs
,
R. H.
Friend
, and
F.
Gao
,
Nat. Mater.
17
,
119
(
2018
).
6.
J.
Liu
 et al.,
Nat. Commun.
6
,
10032
(
2015
).
7.
H.
Kaji
 et al.,
Nat. Commun.
6
,
8476
(
2015
).
8.
J.
Zaumseil
and
H.
Sirringhaus
,
Chem. Rev.
107
,
1296
(
2007
).
9.
A. L.
Briseno
,
S. C. B.
Mannsfeld
,
C.
Reese
,
J. M.
Hancock
,
Y.
Xiong
,
S. A.
Jenekhe
,
Z.
Bao
, and
Y.
Xia
,
Nano Lett.
7
,
2847
(
2007
).
10.
B.
Peng
,
S.
Huang
,
Z.
Zhou
, and
P. K. L.
Chan
,
Adv. Funct. Mater.
27
,
1700999
(
2017
).
11.
K.
Kim
,
J.
Bae
,
S. H.
Noh
,
J.
Jang
,
S. H.
Kim
, and
C. E.
Park
,
J. Phys. Chem. Lett.
8
,
5492
(
2017
).
12.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
13.
J.-L.
Brédas
,
J. E.
Norton
,
J.
Cornil
, and
V.
Coropceanu
,
Acc. Chem. Res.
42
,
1691
(
2009
).
14.
T.
Van Regemorter
,
M.
Guillaume
,
G.
Sini
,
J. S.
Sears
,
V.
Geskin
,
J.-L.
Brédas
,
D.
Beljonne
, and
J.
Cornil
,
Theor. Chem. Acc.
131
,
1273
(
2012
).
15.
K.
Do
,
M. K.
Ravva
,
T.
Wang
, and
J.-L.
Brédas
,
Chem. Mater.
29
,
346
(
2017
).
16.
I.
Avilov
,
V.
Geskin
, and
J.
Cornil
,
Adv. Funct. Mater.
19
,
624
633
(
2009
).
17.
V.
Geskin
,
R.
Stadler
, and
J.
Cornil
,
Phys. Rev. B
80
,
085411
(
2009
).
18.
G.
Sini
,
J. S.
Sears
, and
J.-L.
Brédas
,
J. Chem. Theory Comput.
7
,
602
(
2011
).
19.
A.
Fonari
,
C.
Sutton
,
J.-L.
Brédas
, and
V.
Coropceanu
,
Phys. Rev. B
90
,
165205
(
2014
).
20.
C.
Park
,
V.
Atalla
,
S.
Smith
, and
M.
Yoon
,
ACS Appl. Mater. Interfaces
9
,
27266
(
2017
).
21.
V.
Atalla
,
I. Y.
Zhang
,
O. T.
Hofmann
,
X.
Ren
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. B
94
,
035140
(
2016
).
22.
T.
Körzdörfer
,
J. Chem. Phys.
134
,
094111
(
2011
).
23.
L.
Gallandi
,
N.
Marom
,
P.
Rinke
, and
T.
Körzdörfer
,
J. Chem. Theory Comput.
12
,
605
(
2016
).
24.
A.
Kubas
,
F.
Hoffmann
,
A.
Heck
,
H.
Oberhofer
,
M.
Elstner
, and
J.
Blumberger
,
J. Chem. Phys.
140
,
104105
(
2014
).
25.
A.
Kubas
,
F.
Gajdos
,
A.
Heck
,
H.
Oberhofer
,
M.
Elstner
, and
J.
Blumberger
,
Phys. Chem. Chem. Phys.
17
,
14342
(
2015
).
26.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
27.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
,
Chem. Rev.
112
,
321
(
2012
).
28.
M.
Pavanello
,
T. V.
Voorhis
,
L.
Visscher
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
054101
(
2013
).
29.
A.
Solovyeva
,
M.
Pavanello
, and
J.
Neugebauer
,
J. Chem. Phys.
140
,
164103
(
2014
).
30.
P.
Ramos
and
M.
Pavanello
,
J. Chem. Theory Comput.
10
,
2546
(
2014
).
31.
P.
Ramos
and
M.
Pavanello
,
Phys. Chem. Chem. Phys.
18
,
21172
(
2016
).
32.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
33.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2014
).
34.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
,
Chem. Rev.
115
,
5891
(
2015
).
35.
A.
Genova
,
D.
Ceresoli
, and
M.
Pavanello
,
J. Chem. Phys.
141
,
174101
(
2014
).
36.
J.
Tölle
,
A.
Severo Pereira Gomes
,
P.
Ramos
, and
M.
Pavanello
,
Int. J. Quantum Chem.
119
,
e25801
(
2019
).
37.
B.
Milián
,
R.
Pou-Amérigo
,
R.
Viruela
, and
E.
Ortí
,
Chem. Phys. Lett.
391
,
148
(
2004
).
38.
C. E.
Klots
,
R. N.
Compton
, and
V. F.
Raaen
,
J. Chem. Phys.
60
,
1177
(
1974
).
39.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
J. Chem. Phys.
129
,
121104
(
2008
).
40.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
41.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
42.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
43.
W.
Yang
,
A. J.
Cohen
, and
P.
Mori-Sánchez
,
J. Chem. Phys.
136
,
204111
(
2012
).
44.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
45.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
46.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
47.
48.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
49.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
50.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
,
J. Chem. Phys.
133
,
084103
(
2010
).
51.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
52.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
53.
D. S.
Jensen
and
A.
Wasserman
,
Int. J. Quantum Chem.
118
,
e25425
(
2018
).
54.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
55.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
56.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
57.
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
J. Chem. Phys.
140
,
114101
(
2014
).
58.
P.
Elliott
,
K.
Burke
,
M. H.
Cohen
, and
A.
Wasserman
,
Phys. Rev. A
82
,
024501
(
2010
).
59.
R.
Tang
,
J.
Nafziger
, and
A.
Wasserman
,
Phys. Chem. Chem. Phys.
14
,
7780
(
2012
).
60.
J.
Nafziger
and
A.
Wasserman
,
J. Chem. Phys.
143
,
234105
(
2015
).
61.
S. M.
Beyhan
,
A. W.
Götz
,
Ch. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
62.
H. J.
Werner
 et al., molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
63.
J.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
64.
Software for Chemistry and Materials, Amsterdam, Adf, Amsterdam Density Functional Program, http://www.scm.com.
65.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
66.
E.
Van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
67.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
68.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
69.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
70.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
71.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
72.
Ch. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
73.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
74.
Ch. R.
Jacob
,
S. M.
Beyhan
,
R. E.
Bulo
,
A. S. P.
Gomes
,
A. W.
Götz
,
K.
Kiewisch
,
J.
Sikkema
, and
L.
Visscher
,
J. Comput. Chem.
32
,
2328
(
2011
).
75.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).

Supplementary Material

You do not currently have access to this content.