The dynamics and rheology of semidilute polymer solutions in strong flows are of great practical relevance. Processing applications can in principle be designed utilizing the relationship between nonequilibrium polymer conformations and the material properties of the solution. However, the interplay between concentration, flow, hydrodynamic interactions (HIs), and topological interactions which govern semidilute polymer dynamics is challenging to characterize. Brownian dynamics (BD) simulations are particularly valuable as a way to directly visualize how molecular interactions arise in these systems and are quantitatively comparable to single-molecule experiments. However, such simulations are often computationally intractable and are limited by the need to calculate the correlated Brownian noise via decomposition of the diffusion tensor. Previously, we have introduced an iterative conformational averaging (CA) method for BD simulations which bypasses these limitations by preaveraging the HI and Brownian noise in an iterative procedure. In this work, we generalize the CA method to flowing semidilute solutions by introducing a conformation dependent diffusion tensor and a strain dependent approximation to the conformationally averaged Brownian noise. We find that this approach nearly quantitatively reproduces both transient and steady state polymer dynamics and rheology while achieving an order of magnitude computational acceleration. We then utilize the CA method to investigate the concentration and flow rate dependence of polymer dynamics in planar extensional flows. Our results are consistent with previous experimental and simulation studies and provide a detailed view of broad conformational distributions in the semidilute regime. We observe interconversion between stretched and coiled states at steady state, which we conjecture occur due to the effect of concentration on the conformation dependent polymer drag. Additionally, we observe transient flow-induced intermolecular hooks in the startup of flow which lead to diverse and unique stretching pathways.

1.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
1980
).
2.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Fluid Mechanics Vol. 1 (
Wiley
,
1987
).
3.
C. M.
Schroeder
,
J. Rheol.
62
,
371
(
2018
).
4.
Y.
Diao
,
B. C.
Tee
,
G.
Giri
,
J.
Xu
,
D. H.
Kim
,
H. A.
Becerril
,
R. M.
Stoltenberg
,
T. H.
Lee
,
G.
Xue
,
S. C.
Mannsfeld
 et al.,
Nat. Mater.
12
,
665
(
2013
).
5.
Z.-M.
Huang
,
Y.-Z.
Zhang
,
M.
Kotaki
, and
S.
Ramakrishna
,
Compos. Sci. Technol.
63
,
2223
(
2003
).
6.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
7.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
2003
), Vol. 23.
8.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol. 73.
9.
P. E.
Rouse
, Jr.
,
J. Chem. Phys.
21
,
1272
(
1953
).
10.
B. H.
Zimm
,
J. Chem. Phys.
24
,
269
(
1956
).
11.
P.-G.
de Gennes
,
J. Chem. Phys.
60
,
5030
(
1974
).
12.
R.
Larson
and
J.
Magda
,
Macromolecules
22
,
3004
(
1989
).
13.
R. B.
Bird
,
R. C.
Armstrong
,
O.
Hassager
, and
C.
Curtiss
,
Dynamics of Polymeric Liquids
, Kinetic Theory Vol. 2 (
Wiley
,
1987
).
14.
H. C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
1996
).
15.
H. C.
Öttinger
,
J. Chem. Phys.
86
,
3731
(
1987
).
16.
H. C.
Öttinger
,
J. Chem. Phys.
90
,
463
(
1989
).
17.
J.
Magda
,
R.
Larson
, and
M.
Mackay
,
J. Chem. Phys.
89
,
2504
(
1988
).
18.
J. R.
Prakash
and
H. C.
Öttinger
,
J. Non-Newtonian Fluid Mech.
71
,
245
(
1997
).
19.
J. R.
Prakash
,
Rheology Series
(
Elsevier
,
1999
), Vol. 8, pp.
467
517
.
20.
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
,
Science
276
,
2016
(
1997
).
21.
D. E.
Smith
and
S.
Chu
,
Science
281
,
1335
(
1998
).
22.
C. M.
Schroeder
,
H. P.
Babcock
,
E. S.
Shaqfeh
, and
S.
Chu
,
Science
301
,
1515
(
2003
).
23.
R.
Larson
,
H.
Hu
,
D.
Smith
, and
S.
Chu
,
J. Rheol.
43
,
267
(
1999
).
24.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
116
,
7752
(
2002
).
26.
C. M.
Schroeder
,
R. E.
Teixeira
,
E. S.
Shaqfeh
, and
S.
Chu
,
Phys. Rev. Lett.
95
,
018301
(
2005
).
27.
C. M.
Schroeder
,
R. E.
Teixeira
,
E. S.
Shaqfeh
, and
S.
Chu
,
Macromolecules
38
,
1967
(
2005
).
28.
R. E.
Teixeira
,
A. K.
Dambal
,
D. H.
Richter
,
E. S.
Shaqfeh
, and
S.
Chu
,
Macromolecules
40
,
2461
(
2007
).
29.
D. J.
Mai
,
A. B.
Marciel
,
C. E.
Sing
, and
C. M.
Schroeder
,
ACS Macro Lett.
4
,
446
(
2015
).
30.
K.-W.
Hsiao
,
C. M.
Schroeder
, and
C. E.
Sing
,
Macromolecules
49
,
1961
(
2016
).
31.
D. J.
Mai
,
A.
Saadat
,
B.
Khomami
, and
C. M.
Schroeder
,
Macromolecules
51
,
1507
(
2018
).
32.
C. D.
Young
,
J. R.
Qian
,
M.
Marvin
, and
C. E.
Sing
,
Phys. Rev. E
99
,
062502
(
2019
).
33.
S.
Somani
,
E. S.
Shaqfeh
, and
J. R.
Prakash
,
Macromolecules
43
,
10679
(
2010
).
34.
C. E.
Sing
and
A.
Alexander-Katz
,
Macromolecules
43
,
3532
(
2010
).
35.
C. E.
Sing
and
A.
Alexander-Katz
,
J. Chem. Phys.
135
,
014902
(
2011
).
36.
C. M.
Schroeder
,
E. S.
Shaqfeh
, and
S.
Chu
,
Macromolecules
37
,
9242
(
2004
).
37.
C.-C.
Hsieh
and
R. G.
Larson
,
J. Rheol.
48
,
995
(
2004
).
38.
C.-C.
Hsieh
and
R. G.
Larson
,
J. Rheol.
49
,
1081
(
2005
).
39.
P.-G.
de Gennes
,
Macromolecules
9
,
594
(
1976
).
40.
A.
Jain
,
B.
Dünweg
, and
J. R.
Prakash
,
Phys. Rev. Lett.
109
,
088302
(
2012
).
41.
S.
Edwards
and
K. F.
Freed
,
J. Chem. Phys.
61
,
1189
(
1974
).
42.
S.
Edwards
and
M.
Muthukumar
,
Macromolecules
17
,
586
(
1984
).
43.
R.
Prabhakar
,
S.
Gadkari
,
T.
Gopesh
, and
M.
Shaw
,
J. Rheol.
60
,
345
(
2016
).
44.
Y.
Heo
and
R. G.
Larson
,
Macromolecules
41
,
8903
(
2008
).
45.
J. R.
Prakash
,
Curr. Opin. Colloid Interface Sci.
43
,
63
(
2019
).
46.
G.
Fuller
and
L.
Leal
,
J. Polym. Sci., Polym. Phys. Ed.
19
,
557
(
1981
).
47.
R.-Y.
Ng
and
L.
Leal
,
J. Rheol.
37
,
443
(
1993
).
48.
V.
Tirtaatmadja
and
T.
Sridhar
,
J. Rheol.
37
,
1081
(
1993
).
49.
G.
Batchelor
,
J. Fluid Mech.
46
,
813
(
1971
).
50.
D. F.
James
and
T.
Sridhar
,
J. Rheol.
39
,
713
(
1995
).
51.
C.
Clasen
,
J.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L.
Scriven
,
M.
Verani
, and
G. H.
McKinley
,
J. Rheol.
50
,
849
(
2006
).
52.
J. S.
Hur
,
E. S.
Shaqfeh
,
H. P.
Babcock
,
D. E.
Smith
, and
S.
Chu
,
J. Rheol.
45
,
421
(
2001
).
53.
H. P.
Babcock
,
D. E.
Smith
,
J. S.
Hur
,
E. S.
Shaqfeh
, and
S.
Chu
,
Phys. Rev. Lett.
85
,
2018
(
2000
).
54.
M.
Harasim
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
,
Phys. Rev. Lett.
110
,
108302
(
2013
).
55.
B.
Huber
,
M.
Harasim
,
B.
Wunderlich
,
M.
Kröger
, and
A. R.
Bausch
,
ACS Macro Lett.
3
,
136
(
2014
).
56.
K.-W.
Hsiao
,
C.
Sasmal
,
J.
Ravi Prakash
, and
C. M.
Schroeder
,
J. Rheol.
61
,
151
(
2017
).
57.
A.
Shenoy
,
C. V.
Rao
, and
C. M.
Schroeder
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
3976
(
2016
).
58.
C.
Stoltz
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Rheol.
50
,
137
(
2006
).
59.
C.
Sasmal
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J.
Ravi Prakash
,
J. Rheol.
61
,
169
(
2017
).
60.
R.
Prabhakar
,
C.
Sasmal
,
D. A.
Nguyen
,
T.
Sridhar
, and
J. R.
Prakash
,
Phys. Rev. Fluids
2
,
011301
(
2017
).
61.
Y.
Zhou
,
K.-W.
Hsiao
,
K. E.
Regan
,
D.
Kong
,
G. B.
McKenna
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
,
Nat. Commun.
10
,
1753
(
2019
).
62.
C.-C.
Huang
,
R. G.
Winkler
,
G.
Sutmann
, and
G.
Gompper
,
Macromolecules
43
,
10107
(
2010
).
63.
C.-C.
Huang
,
G.
Sutmann
,
G.
Gompper
, and
R.
Winkler
,
Europys. Lett.
93
,
54004
(
2011
).
64.
M.
Nafar Sefiddashti
,
B.
Edwards
, and
B.
Khomami
,
J. Rheol.
59
,
119
(
2015
).
65.
A.
Jain
,
P.
Sunthar
,
B.
Dünweg
, and
J. R.
Prakash
,
Phys. Rev. E
85
,
066703
(
2012
).
66.
D. L.
Ermak
and
J.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
67.
M.
Fixman
,
Macromolecules
19
,
1204
(
1986
).
68.
T.
Ando
,
E.
Chow
,
Y.
Saad
, and
J.
Skolnick
,
J. Chem. Phys.
137
,
064106
(
2012
).
69.
T.
Geyer
and
U.
Winter
,
J. Chem. Phys.
130
,
114905
(
2009
).
70.
E. K.
Guckel
, “
Large scale simulations of particulate systems using the PME method
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
1999
.
71.
A. J.
Banchio
and
J. F.
Brady
,
J. Chem. Phys.
118
,
10323
(
2003
).
72.
A.
Sierou
and
J. F.
Brady
,
J. Fluid Mech.
448
,
115
(
2001
).
73.
X.
Liu
and
E.
Chow
, in
2014 IEEE 28th International Parallel and Distributed Processing Symposium
(
IEEE
,
2014
), pp.
563
572
.
74.
A.
Saadat
and
B.
Khomami
,
Phys. Rev. E
92
,
033307
(
2015
).
75.
A. M.
Fiore
,
F.
Balboa Usabiaga
,
A.
Donev
, and
J. W.
Swan
,
J. Chem. Phys.
146
,
124116
(
2017
).
76.
L.
Miao
,
C. D.
Young
, and
C. E.
Sing
,
J. Chem. Phys.
147
,
024904
(
2017
).
77.
C. D.
Young
,
M.
Marvin
, and
C. E.
Sing
,
J. Chem. Phys.
149
,
174904
(
2018
).
78.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
79.
M.
Kröger
,
C.
Luap
, and
R.
Muller
,
Macromolecules
30
,
526
(
1997
).
80.
W.-S.
Xu
,
J.-M. Y.
Carrillo
,
C. N.
Lam
,
B. G.
Sumpter
, and
Y.
Wang
,
ACS Macro Lett.
7
,
190
(
2018
).
81.
T. C.
O’Connor
,
N. J.
Alvarez
, and
M. O.
Robbins
,
Phys. Rev. Lett.
121
,
047801
(
2018
).
82.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
83.
H.
Yamakawa
,
J. Chem. Phys.
53
,
436
(
1970
).
84.
A.
Kraynik
and
D.
Reinelt
,
Int. J. Multiphase Flow
18
,
1045
(
1992
).
85.
B.
Todd
and
P. J.
Daivis
,
Phys. Rev. Lett.
81
,
1118
(
1998
).
86.
C.
Beenakker
,
J. Chem. Phys.
85
,
1581
(
1986
).
87.
A.
Saadat
and
B.
Khomami
,
J. Chem. Phys.
140
,
184903
(
2014
).
88.
M.
Dobson
,
J. Chem. Phys.
141
,
184103
(
2014
).
90.
H. P.
Babcock
,
R. E.
Teixeira
,
J. S.
Hur
,
E. S.
Shaqfeh
, and
S.
Chu
,
Macromolecules
36
,
4544
(
2003
).
91.
J.
Padding
and
W. J.
Briels
,
J. Chem. Phys.
115
,
2846
(
2001
).

Supplementary Material

You do not currently have access to this content.