A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations.

1.
E.
Lauga
and
T.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
2.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
3.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Mod. Phys.
45
,
3
11
(
1977
).
4.
J. E.
Avron
,
O.
Kenneth
, and
D. H.
Oaknin
, “
Pushmepullyou: An efficient micro-swimmer
,”
New J. Phys.
7
,
234
(
2005
); e-print arXiv:0501049 [math-ph].
5.
M. T.
Downton
and
H.
Stark
, “
Simulation of a model microswimmer
,”
J. Phys.: Condens. Matter
21
,
204101
(
2009
).
6.
A.
Najafi
and
R.
Golestanian
, “
Simple swimmer at low Reynolds number: Three linked spheres
,”
Phys. Rev. E
69
,
062901
(
2004
).
7.
R.
Golestanian
and
A.
Ajdari
, “
Analytic results for the three-sphere swimmer at low Reynolds number
,”
Phys. Rev. E
77
,
036308
(
2008
).
8.
J.
Pande
and
A.-S.
Smith
, “
Forces and shapes as determinants of micro-swimming: Effect on synchronisation and the utilisation of drag
,”
Soft Matter
11
,
2364
2371
(
2015
).
9.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
A. J. T. M.
Mathijssen
,
C.
Hoell
,
S.
Goh
,
J.
Bławzdziewicz
,
A. M.
Menzel
, and
H.
Löwen
, “
State diagram of a three-sphere microswimmer in a channel
,”
J. Phys.: Condens. Matter
30
,
254004
(
2018
).
10.
C. M.
Pooley
,
G. P.
Alexander
, and
J. M.
Yeomans
, “
Hydrodynamic interaction between two swimmers at low Reynolds number
,”
Phys. Rev. Lett.
99
,
228103
(
2007
).
11.
R.
Zargar
,
A.
Najafi
, and
M.
Miri
, “
Three-sphere low-Reynolds-number swimmer near a wall
,”
Phys. Rev. E
80
,
026308
(
2009
).
12.
G.
Grosjean
,
M.
Hubert
,
G.
Lagubeau
, and
N.
Vandewalle
, “
Realization of the Najafi-Golestanian microswimmer
,”
Phys. Rev. E
94
,
021101
(
2016
).
13.
G.
Lagubeau
,
G.
Grosjean
,
A.
Darras
,
G.
Lumay
,
M.
Hubert
, and
N.
Vandewalle
, “
Statics and dynamics of magnetocapillary bonds
,”
Phys. Rev. E
93
,
053117
(
2016
).
14.
B. U.
Felderhof
, “
The swimming of animalcules
,”
Phys. Fluids
18
,
063101
(
2006
).
15.
K.
Pickl
,
J.
Pande
,
H.
Koestler
,
U.
Ruede
, and
A. S.
Smith
, “
Lattice Boltzmann simulations of the bead-spring microswimmer with a responsive stroke—From an individual to swarms
,”
J. Phys.: Condens. Matter
29
,
124001
(
2017
).
16.
J.
Pande
,
L.
Merchant
,
T.
Krüger
,
J.
Harting
, and
A.-S.
Smith
, “
Setting the pace of microswimmers: When increasing viscosity speeds up self-propulsion
,”
New J. Phys.
19
,
053024
(
2017
).
17.
J.
Pande
,
L.
Merchant
,
T.
Krüger
,
J.
Harting
, and
A.-S.
Smith
, “
Effect of body deformability on microswimming
,”
Soft Matter
13
,
3984
3993
(
2017
).
18.
G.
Grosjean
,
G.
Lagubeau
,
A.
Darras
,
M.
Hubert
,
G.
Lumay
, and
N.
Vandewalle
, “
Remote control of self-assembled microswimmers
,”
Sci. Rep.
5
,
16035
(
2015
).
19.
M. S.
Rizvi
,
A.
Farutin
, and
C.
Misbah
, “
Three-bead steering microswimmers
,”
Phys. Rev. E
97
,
023102
(
2018
).
20.
N.
Küchler
,
H.
Löwen
, and
A. M.
Menzel
, “
Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields
,”
Phys. Rev. E
93
,
22610
(
2016
); e-print arXiv:1510.02325.
21.
B. M.
Friedrich
and
F.
Jülicher
, “
Flagellar synchronization independent of hydrodynamic interactions
,”
Phys. Rev. Lett.
109
,
138102
(
2012
).
22.
K.
Polotzek
and
B. M.
Friedrich
, “
A three-sphere swimmer for flagellar synchronization
,”
New J. Phys.
15
,
045005
(
2013
); e-print arXiv:1211.5981v3.
23.
R. R.
Bennett
and
R.
Golestanian
, “
Emergent run-and-tumble behavior in a simple model of chlamydomonas with intrinsic noise
,”
Phys. Rev. Lett.
110
,
148102
(
2013
).
24.
L.
Jibuti
,
W.
Zimmermann
,
S.
Rafaï
, and
P.
Peyla
, “
Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling
,”
Phys. Rev. E
96
,
52610
(
2017
); e-print arXiv:1412.3176.
25.
R.
Ledesma-Aguilar
,
H.
Löwen
, and
J. M.
Yeomans
, “
A circle swimmer at low Reynolds number
,”
Eur. Phys. J. E
35
,
70
(
2012
).
26.
D. J.
Earl
,
C. M.
Pooley
,
J. F.
Ryder
,
I.
Bredberg
, and
J. M.
Yeomans
, “
Modeling microscopic swimmers at low Reynolds number
,”
J. Chem. Phys.
126
,
064703
(
2007
); e-print arXiv:0701511 [cond-mat].
27.
R.
Dreyfus
,
J.
Baudry
, and
H. A.
Stone
, “
Purcell’s ‘rotator’: Mechanical rotation at low Reynolds number
,”
Eur. Phys. J. B
47
,
161
164
(
2005
).
28.
V.
Lobaskin
,
D.
Lobaskin
, and
I. M.
Kulić
, “
Brownian dynamics of a microswimmer
,”
Eur. Phys. J.: Spec. Top.
157
,
149
156
(
2008
); e-print arXiv:0709.0792.
29.
K.
Pickl
,
J.
Götz
,
K.
Iglberger
,
J.
Pande
,
K.
Mecke
,
A.-S.
Smith
, and
U.
Rüde
, “
All good things come in threes—Three beads learn to swim with lattice Boltzmann and a rigid body solver
,”
J. Comput. Sci.
3
,
374
387
(
2012
), advanced Computing Solutions for Health Care and Medicine.
30.
M.
Taghiloo
and
M.
Miri
, “
Three-sphere magnetic swimmer in a shear flow
,”
Phys. Rev. E
88
,
023008
(
2013
).
31.
S.
Babel
,
H.
Löwen
, and
A.
Menzel
, “
Dynamics of a linear magnetic “microswimmer molecule”
,”
Europhys. Lett.
113
,
58003
(
2016
).
32.
R.
Chinomona
,
J.
Lajeunesse
,
W. H.
Mitchell
,
Y.
Yao
, and
S. E.
Spagnolie
, “
Stability and dynamics of magnetocapillary interactions
,”
Soft Matter
11
,
1828
1838
(
2015
).
33.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
, “
The lattice Boltzmann equation: Theory and applications
,”
Phys. Rep.
222
,
145
(
1992
).
34.
Y. H.
Qian
,
D.
D’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
35.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
36.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
1819
(
1993
).
37.
H.
Liu
,
Q.
Kang
,
C. R.
Leonardi
,
S.
Schmieschek
,
A.
Narváez
,
B. D.
Jones
,
J. R.
Williams
,
A. J.
Valocchi
, and
J.
Harting
, “
Multiphase lattice Boltzmann simulations for porous media applications
,”
Comput. Geosci.
20
,
777
805
(
2016
).
38.
S.
Frijters
,
F.
Günther
, and
J.
Harting
, “
Effects of nanoparticles and surfactant on droplets in shear flow
,”
Soft Matter
8
,
6542
6556
(
2012
).
39.
T.
Krüger
,
S.
Frijters
,
F.
Günther
,
B.
Kaoui
, and
J.
Harting
, “
Numerical simulations of complex fluid-fluid interface dynamics
,”
Eur. Phys. J.: Spec. Top.
222
,
177
198
(
2013
).
40.
F.
Jansen
and
J.
Harting
, “
From bijels to Pickering emulsions: A lattice Boltzmann study
,”
Phys. Rev. E
83
,
046707
(
2011
).
41.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results
,”
J. Fluid Mech.
271
,
311
339
(
1994
).
42.
A. J. C.
Ladd
and
R.
Verberg
, “
Lattice-Boltzmann simulations of particle-fluid suspensions
,”
J. Stat. Phys.
104
,
1191
1251
(
2001
).
43.
F.
Günther
,
S.
Frijters
, and
J.
Harting
, “
Timescales of emulsion formation caused by anisotropic particles
,”
Soft Matter
10
,
4977
4989
(
2014
).
44.
G.
Lumay
,
N.
Obara
,
F.
Weyer
, and
N.
Vandewalle
, “
Self-assembled magnetocapillary swimmers
,”
Soft Matter
9
,
2420
2425
(
2013
).
45.
Q.
Xie
,
G. B.
Davies
,
F.
Günther
, and
J.
Harting
, “
Tunable dipolar capillary deformations for magnetic Janus particles at fluid–fluid interfaces
,”
Soft Matter
11
,
3581
3588
(
2015
).
46.
Q.
Xie
,
G. B.
Davies
, and
J.
Harting
, “
Controlled capillary assembly of magnetic Janus particles at fluid–fluid interfaces
,”
Soft Matter
12
,
6566
6574
(
2016
).
47.
Q.
Xie
,
G. B.
Davies
, and
J.
Harting
, “
Direct assembly of magnetic Janus particles at a droplet interface
,”
ACS Nano
11
,
11232
11239
(
2017
).
48.
C.
Kunert
,
J.
Harting
, and
O. I.
Vinogradova
, “
Random-roughness hydrodynamic boundary conditions
,”
Phys. Rev. Lett.
105
,
016001
(
2010
).
49.
C.
Kunert
and
J.
Harting
, “
Lattice Boltzmann simulations of liquid film drainage between smooth surfaces
,”
IMA J. Appl. Math.
76
,
761
(
2011
).
50.
Colloidal Particles at Liquid Interfaces
, 3rd ed., edited by
B. P.
Binks
and
T. S.
Horozov
(
Cambridge University Press
,
New York
,
2006
).
51.
D.
Vella
and
L.
Mahadevan
, “
The “Cheerios effect”
,”
Am. J. Phys.
73
,
817
825
(
2005
).
52.
D.
Vella
,
D.-G.
Lee
, and
H.-Y.
Kim
, “
The load supported by small floating objects
,”
Langmuir
22
,
5979
5981
(
2006
).
53.
Handbook of Mathematics
, 3rd ed., edited by
I. N.
Bronshtein
and
K. A.
Semendyayev
(
Springer
,
Berlin
,
1998
).
54.
N.
Vandewalle
,
L.
Clermont
,
D.
Terwagne
,
S.
Dorbolo
,
E.
Mersch
, and
G.
Lumay
, “
Symmetry breaking in a few-body system with magnetocapillary interactions
,”
Phys. Rev. E
85
,
041402
(
2012
).
55.
Particles at Fluid Interfaces and Membranes
, edited by
P.
Kralchevsky
and
K.
Nagayama
(
Elsevier
,
Amsterdam
,
2001
).
56.
Low-Gravity Fluid Mechanics: Mathematical Theory of Capillary Phenomena
, edited by
A.
Myshkis
and
V. G.
Babskiĭ
(
Springer
,
Berlin
,
1987
).
57.
M.
Hubert
, “
Cooperative dynamics and self-propulsion of active matter at interfaces
,” Ph.D. thesis,
Université de Liège
,
Liège
,
2018
.
58.
C.
Oseen
, “
Ueber die Stokessche Formel und ueber eine verwandte Aufgabe in der Hydrodynamik
,”
Ark. Mat.
6
(
29
),
1
(
1910
) (in German).
You do not currently have access to this content.