Cavity ring-down spectroscopy (CRDS) is a well-established, highly sensitive absorption technique whose sensitivity and selectivity for trace radical sensing can be further enhanced by measuring the polarization rotation of the intracavity light by the paramagnetic samples in the presence of a magnetic field. In this paper, we highlight the use of this Faraday rotation cavity ring-down spectroscopy (FR-CRDS) for the detection of HO2 radicals. In particular, we use a cold atmospheric pressure plasma jet as a highly efficient source of HO2 radicals and show that FR-CRDS in the near-infrared spectral region (1506 nm) has the potential to be a useful tool for studying radical chemistry. By simultaneously measuring ring-down times of orthogonal linearly polarized light, measurements of Faraday effect-induced rotation angles (θ) and absorption coefficients (α) are retrieved from the same data set. The Faraday rotation measurement exhibits better long-term stability and enhanced sensitivity due to its differential nature, whereby highly correlated noise between the two channels and slow drifts cancel out. The bandwidth-normalized sensitivities are αmin=2.2×1011cm1Hz1/2 and θmin=0.62nrad Hz1/2. The latter corresponds to a minimum detectable (circular) birefringence of Δnmin=5×1016Hz1/2. Using the overlapping qQ3(N = 4–9) transitions of HO2, we estimate limits of detection of 3.1 × 108 cm−3 based on traditional (absorption) CRDS methods and 6.7 × 107 cm−3 using FR-CRDS detection, where each point of the spectrum was acquired during 2 s. In addition, Verdet constants for pertinent carrier (He, Ar) and bulk (N2, O2) gases were recorded in this spectral region for the first time. These show good agreement with recent measurements of air and values extrapolated from reported Verdet constants at shorter wavelengths, demonstrating the potential of FR-CRDS for measurements of very weak Faraday effects and providing a quantitative validation to the computed rotation angles.

1.
P. J.
Crutzen
, “
The influence of nitrogen oxides on the atmospheric ozone content
,”
Q. J. R. Meteorol. Soc.
96
,
320
325
(
1970
).
2.
M.
Blocquet
,
C.
Schoemaecker
,
D.
Amedro
,
O.
Herbinet
,
F.
Battin-Leclerc
, and
C.
Fittschen
, “
Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by fluorescence assay by gas expansion technique
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
20014
20017
(
2013
).
3.
J. P.
Eiserich
,
M.
Hristova
,
C. E.
Cross
,
A. D.
Jones
,
B. A.
Freeman
,
B.
Halliwell
, and
A.
van der Vliet
, “
Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils
,”
Nature
391
,
393
397
(
1998
).
4.
B. J.
Finlayson-Pitts
, “
Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles
,”
Science
276
,
1045
1051
(
1997
).
5.
Y. A.
Bakhirkin
,
A. A.
Kosterev
,
C.
Roller
,
R. F.
Curl
, and
F. K.
Tittel
, “
Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection
,”
Appl. Opt.
43
,
2257
2266
(
2004
).
6.
S. M.
Cristescu
,
D.
Marchenko
,
J.
Mandon
,
K.
Hebelstrup
,
G. W.
Griffith
,
L. A. J.
Mur
, and
F. J. M.
Harren
, “
Spectroscopic monitoring of NO traces in plants and human breath: Applications and perspectives
,”
Appl. Phys. B
110
,
203
211
(
2013
).
7.
F. A. F.
Winiberg
,
S. C.
Smith
,
I.
Bejan
,
C. A.
Brumby
,
T.
Ingham
,
T. L.
Malkin
,
S. C.
Orr
,
D. E.
Heard
, and
P. W.
Seakins
, “
Pressure-dependent calibration of the OH and HO2 channels of a FAGE HOx instrument using the highly instrumented reactor for atmospheric chemistry (HIRAC)
,”
Atmos. Meas. Tech.
8
,
523
540
(
2015
).
8.
H.
Levy
, “
Normal atmosphere: Large radical and formaldehyde concentrations predicted
,”
Science
173
,
141
143
(
1971
).
9.
M.
Gianella
,
S.
Reuter
,
A. L.
Aguila
,
G. A. D.
Ritchie
, and
J.-P. H.
van Helden
, “
Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy
,”
New J. Phys.
18
,
113027
(
2016
).
10.
N.
Blin-Simiand
,
S.
Pasquiers
, and
L.
Magne
, “
Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range
,”
J. Phys. D: Appl. Phys.
49
,
195202
(
2016
).
11.
C. A.
Cantrell
,
D. H.
Stedman
, and
G. J.
Wendel
, “
Measurement of atmospheric peroxy radicals by chemical amplification
,”
Anal. Chem.
56
,
1496
1502
(
1984
).
12.
Y.
Liu
,
R.
Morales-Cueto
,
J.
Hargrove
,
D.
Medina
, and
J.
Zhang
, “
Measurements of peroxy radicals using chemical amplification–cavity ringdown spectroscopy
,”
Environ. Sci. Technol.
43
,
7791
7796
(
2009
).
13.
D.
Amedro
,
K.
Miyazaki
,
A.
Parker
,
C.
Schoemaecker
, and
C.
Fittschen
, “
Atmospheric and kinetic studies of OH and HO2 by the FAGE technique
,”
J. Environ. Sci.
24
,
78
86
(
2012
).
14.
P. S.
Stevens
,
J. H.
Mather
, and
W. H.
Brune
, “
Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure
,”
J. Geophys. Res.
99
,
3543
3557
, (
1994
).
15.
G. D.
Edwards
,
C. A.
Cantrell
,
S.
Stephens
,
B.
Hill
,
O.
Goyea
,
R. E.
Shetter
,
R. L.
Mauldin
,
E.
Kosciuch
,
D. J.
Tanner
, and
F. L.
Eisele
, “
Chemical ionization mass spectrometer instrument for the measurement of tropospheric HO2 and RO2
,”
Anal. Chem.
75
,
5317
5327
(
2003
).
16.
C. A.
Taatjes
and
D. B.
Oh
, “
Time-resolved wavelength modulation spectroscopy measurements of HO2 kinetics
,”
Appl. Opt.
36
,
5817
5821
(
1997
).
17.
J. D.
DeSain
,
A. D.
Ho
, and
C. A.
Taatjes
, “
High-resolution diode laser absorption spectroscopy of the O–H stretch overtone band (2,0,0) ← (0,0,0) of the HO2 radical
,”
J. Mol. Spectrosc.
219
,
163
169
(
2003
).
18.
L. E.
Christensen
,
M.
Okumura
,
S. P.
Sander
,
R. R.
Friedl
,
C. E.
Miller
, and
J. J.
Sloan
, “
Measurements of the rate constant of HO2 + NO2 + N2 → HO2NO2 + N2 using near-infrared wavelength-modulation spectroscopy and UV-visible absorption spectroscopy
,”
J. Phys. Chem. A
108
,
80
91
(
2004
).
19.
J.
Thiebaud
,
S.
Crunaire
, and
C.
Fittschen
, “
Measurements of line strengths in the 2ν1 band of the HO2 radical using laser photolysis/continuous wave cavity ring-down spectroscopy (cw-CRDS)
,”
J. Phys. Chem. A
111
,
6959
6966
(
2007
).
20.
D.
Romanini
,
A. A.
Kachanov
,
N.
Sadeghi
, and
F.
Stoeckel
, “
CW cavity ring down spectroscopy
,”
Chem. Phys. Lett.
264
,
316
322
(
1997
).
21.
L.
Onel
,
A.
Brennan
,
M.
Gianella
,
G.
Ronnie
,
A.
Lawry Aguila
,
G.
Hancock
,
L.
Whalley
,
P. W.
Seakins
,
G. A. D.
Ritchie
, and
D. E.
Heard
, “
An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
,”
Atmos. Meas. Tech.
10
,
4877
4894
(
2017
).
22.
G.
Litfin
,
C. R.
Pollock
,
R. F.
Curl
, and
F. K.
Tittel
, “
Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect
,”
J. Chem. Phys.
72
,
6602
6605
(
1980
).
23.
I. O. G.
Davies
,
P. E. G.
Baird
, and
J. L.
Nicol
, “
Theory and observation of Faraday rotation obtained with strong light fields
,”
J. Phys. B: At. Mol. Phys.
20
,
5371
5386
(
1987
).
24.
A. A.
Papchenko
and
E. A.
Yukov
, “
Calculation of Faraday rotation in an atomic gas
,”
J. Russ. Laser Res.
15
,
493
504
(
1994
).
25.
D.
Jacob
,
M.
Vallet
,
F.
Bretenaker
,
A.
Le Floch
, and
R.
Le Naour
, “
Small Faraday rotation measurement with a Fabry–Pérot cavity
,”
Appl. Phys. Lett.
66
,
3546
3548
(
1995
).
26.
D.
Miyakoshi
,
M.
Aoyama
,
T.
Tohei
,
A.
Minoh
, and
M.
Tsukakoshi
, “
Saturation effect on the lineshape of Faraday rotation spectrum in krypton
,”
Jpn. J. Appl. Phys., Part 1
36
,
7379
7382
(
1997
).
27.
S.
Aono
, “
Theory of optical rotation, Faraday effect, and inverse Faraday effect
,”
Int. J. Quantum Chem.
75
,
33
45
(
1999
).
28.
R.
Lewicki
,
J. H.
Doty
,
R. F.
Curl
,
F. K.
Tittel
, and
G.
Wysocki
, “
Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
12587
12592
(
2009
).
29.
P.
Kluczynski
,
S.
Lundqvist
,
J.
Westberg
, and
O.
Axner
, “
Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm
,”
Appl. Phys. B
103
,
451
459
(
2011
).
30.
C. Y.
Chang
and
J. T.
Shy
, “
Cavity-enhanced Faraday rotation measurement with auto-balanced photodetection
,”
Appl. Opt.
54
,
8526
8530
(
2015
).
31.
S. G.
So
,
E.
Jeng
, and
G.
Wysocki
, “
VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection
,”
Appl. Phys. B
102
,
279
291
(
2011
).
32.
B.
Brumfield
,
W.
Sun
,
Y.
Wang
,
Y.
Ju
, and
G.
Wysocki
, “
Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor
,”
Opt. Lett.
39
,
1783
1786
(
2014
).
33.
M.
Nikodem
,
D.
Weidmann
,
C.
Smith
, and
G.
Wysocki
, “
Signal-to-noise ratio in chirped laser dispersion spectroscopy
,”
Opt. Express
20
,
644
653
(
2012
).
34.
J.
Westberg
and
G.
Wysocki
, “
Cavity ring-down Faraday rotation spectroscopy for oxygen detection
,”
Appl. Phys. B
123
,
168
(
2017
).
35.
R.
Engeln
,
G.
Berden
,
E.
van den Berg
, and
G.
Meijer
, “
Polarization dependent cavity ring down spectroscopy
,”
J. Chem. Phys.
107
,
4458
4467
(
1997
).
36.
F. K.
Tittel
and
A. A.
Kosterev
, “
Special Issue: Optics: Trends in laser sources, spectroscopic techniques and their applications to trace-gas detection
,”
Appl. Phys. B
85
,
171
(
2006
).
37.
T.
Müller
,
K. B.
Wiberg
, and
P. H.
Vaccaro
, “
Cavity ring-down polarimetry (CRDP): A new scheme for probing circular birefringence and circular dichroism in the gas phase
,”
J. Phys. Chem. A
104
,
5959
5968
(
2000
).
38.
H.
Huang
and
K. K.
Lehmann
, “
Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy
,”
Appl. Opt.
47
,
3817
(
2008
).
39.
M.
Durand
,
J.
Morville
, and
D.
Romanini
, “
Shot-noise-limited measurement of sub parts-per-trillion birefringence phase shift in a high-finesse cavity
,”
Phys. Rev. A
82
,
031803
(
2010
).
40.
P.
Dupré
, “
Birefringence-induced frequency beating in high-finesse cavities by continuous-wave cavity ring-down spectroscopy
,”
Phys. Rev. A
92
,
053817
(
2015
).
41.
A. J.
Fleisher
,
D. A.
Long
,
Q.
Liu
, and
J. T.
Hodges
, “
Precision interferometric measurements of mirror birefringence in high-finesse optical resonators
,”
Phys. Rev. A
93
,
013833
(
2016
).
42.
F. D.
Valle
,
A.
Ejlli
,
U.
Gastaldi
,
G.
Messineo
,
E.
Milotti
,
R.
Pengo
,
G.
Ruoso
, and
G.
Zavattini
, “
The PVLAS experiment: Measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity
,”
Eur. Phys. J. C
76
,
24
(
2016
).
43.
M.
Gianella
,
T. H. P.
Pinto
,
X.
Wu
, and
G. A. D.
Ritchie
, “
Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection
,”
J. Chem. Phys.
147
,
054201
(
2017
).
44.
T.
Müller
,
K. B.
Wiberg
,
P. H.
Vaccaro
,
J. R.
Cheeseman
, and
M. J.
Frisch
, “
Cavity ring-down polarimetry (CRDP): Theoretical and experimental characterization
,”
J. Opt. Soc. Am. B
19
,
125
141
(
2002
).
45.
J.
Hayden
,
J.
Westberg
,
C. L.
Patrick
,
B.
Lendl
, and
G.
Wysocki
, “
Frequency-locked cavity ring-down Faraday rotation spectroscopy
,”
Opt. Lett.
43
,
5046
5049
(
2018
).
46.
M. Y.
Alkawareek
,
Q. T.
Algwari
,
G.
Laverty
,
S. P.
Gorman
,
W. G.
Graham
,
D.
O’Connell
, and
B. F.
Gilmore
, “
Eradication of pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma
,”
PLoS One
7
,
13
15
(
2012
).
47.
S.
Reuter
,
J.
Winter
,
A.
Schmidt-Bleker
,
H.
Tresp
,
M. U.
Hammer
, and
K.-D.
Weltmann
, “
Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet
,”
IEEE Trans. Plasma Sci.
40
,
2788
2794
(
2012
).
48.
M.
Gianella
,
S.
Reuter
,
S. A.
Press
,
A.
Schmidt-Bleker
,
J. H.
Helden
, and
G. A.
Ritchie
, “
HO2 reaction kinetics in an atmospheric pressure plasma jet determined by cavity ring-down spectroscopy
,”
Plasma Sources Sci. Technol.
27
,
095013
(
2018
).
49.
J.
Westberg
,
L.
Lathdavong
,
C. M.
Dion
,
J.
Shao
,
P.
Kluczynski
,
S.
Lundqvist
, and
O.
Axner
, “
Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
2415
2433
(
2010
).
50.
D. H.
Ingersoll
and
L. R.
Leibenberg
, “
The Faraday effect in gases and vapors I*
,”
J. Opt. Soc. Am.
44
,
566
571
(
1954
).
51.
I. M.
Savukov
, “
Particle-hole configuration-interaction polarizabilities and Verdet constants of noble-gas atoms
,”
Phys. Rev. A
85
,
1
5
(
2012
).
52.
A.
Cadène
,
D.
Sordes
,
P.
Berceau
,
M.
Fouché
,
R.
Battesti
, and
C.
Rizzo
, “
Faraday and Cotton-Mouton effects of helium at λ=1064 nm
,”
Phys. Rev. A
88
,
1
11
(
2013
).
53.
L. R.
Ingersoll
and
W. L.
James
, “
A sensitive photoelectric method for measuring the Faraday effect
,”
Rev. Sci. Instrum.
24
,
23
25
(
1953
).
54.
L. R.
Ingersoll
and
D. H.
Liebenberg
, “
Faraday effect in gases and vapors III
,”
J. Opt. Soc. Am.
48
,
339
343
(
1958
).
55.
G.
Phelps
,
J.
Abney
,
M.
Broering
, and
W.
Korsch
, “
A sensitive Faraday rotation setup using triple modulation
,”
Rev. Sci. Instrum.
86
,
073107
(
2015
).
56.
P.
Werle
,
R.
Mücke
, and
F.
Slemr
, “
The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS)
,”
Appl. Phys. B
57
,
131
139
(
1993
).
You do not currently have access to this content.