Linear response theory for the multiconfigurational short-range density functional theory (MC–srDFT) model is extended to triplet response with a singlet reference wave function. The triplet linear response equations for MC–srDFT are derived for a general hybrid srGGA functional and implemented in the Dalton program. Triplet excitation energies are benchmarked against the CC3 model of coupled cluster theory and the complete-active-space second-order perturbation theory using three different short-range functionals (srLDA, srPBE, and srPBE0), both with full linear response and employing the generalized Tamm-Dancoff approximation (gTDA). We find that using gTDA is required for obtaining reliable triplet excitations; for the CAS–srPBE model, the mean absolute deviation decreases from 0.40 eV to 0.26 eV, and for the CAS–srLDA model, it decreases from 0.29 eV to 0.21 eV. As expected, the CAS–srDFT model is found to be superior to the HF–srDFT model when analyzing the calculated triplet excitations for molecules in the benchmark set where increased static correlation is expected.

1.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
, “
Multiconfiguration self-consistent field and multireference configuration interaction methods and applications
,”
Chem. Rev.
112
,
108
181
(
2012
).
2.
K.
Andersson
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
3.
K.
Andersson
,
P.-Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
4.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
, “
Introduction of n-electron valence states for multireference perturbation theory
,”
J. Chem. Phys.
114
,
10252
10264
(
2001
).
5.
J. K.
Pedersen
, “
Description of correlation and relativistic effects in calculations of molecular properties
,” Ph.D. thesis,
University of Southern Denmark
,
2004
.
6.
E.
Fromager
,
J.
Toulouse
, and
H. J. Aa.
Jensen
, “
On the universality of the long-/short-range separation in multiconfigurational density-functional theory
,”
J. Chem. Phys.
126
,
074111
(
2007
).
7.
E. D.
Hedegård
,
J.
Toulouse
, and
H. J. Aa.
Jensen
, “
Multiconfigurational short-range density-functional theory for open-shell systems
,”
J. Chem. Phys.
148
,
214103
(
2018
).
8.
A.
Savin
, “
On degeneracy, near degeneracy and density functional theory
,” in
Recent Developments of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
9.
A.
Savin
and
H.-J.
Flad
, “
Density functionals for the Yukawa electron-electron interaction
,”
Int. J. Quantum Chem.
56
,
327
332
(
1995
).
10.
J.
Toulouse
,
A.
Savin
, and
H.-J.
Flad
, “
Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction
,”
Int. J. Quantum Chem.
100
,
1047
1056
(
2004
).
11.
E.
Goll
,
H.-J.
Werner
, and
H.
Stoll
, “
A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers
,”
Phys. Chem. Chem. Phys.
7
,
3917
3923
(
2005
).
12.
E.
Goll
,
H.-J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
, “
A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers
,”
Chem. Phys.
329
,
276
282
(
2006
).
13.
S.
Paziani
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
, “
Local-spin-density functional for multideterminant density functional theory
,”
Phys. Rev. B
73
,
155111
(
2006
).
14.
E.
Goll
,
M.
Ernst
,
F.
Moegle-Hofacker
, and
H.
Stoll
, “
Development and assessment of a short-range meta-GGA functional
,”
J. Chem. Phys.
130
,
234112
(
2009
).
15.
S.
Grimme
and
M.
Waletzke
, “
A combination of Kohn-Sham density functional theory and multi-reference configuration-interaction methods
,”
J. Chem. Phys.
111
,
5645
5655
(
1999
).
16.
C. M.
Marian
and
N.
Gilka
, “
Performance of the density functional theory/multireference configuration-interaction method on electronic excitation of extended π-systems
,”
J. Chem. Theory Comput.
4
,
1501
1515
(
2008
).
17.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
10
,
3669
3680
(
2014
).
18.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
, “
Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems
,”
Acc. Chem. Res.
50
,
66
73
(
2017
).
19.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
, “
Combining long-range configuration interaction with short-range density functionals
,”
Chem. Phys. Lett.
275
,
151
(
1997
).
20.
K.
Sharkas
,
A.
Savin
,
H. J. Aa.
Jensen
, and
J.
Toulouse
, “
A multiconfigurational hybrid density-functional theory
,”
J. Chem. Phys.
137
,
044104
(
2012
).
21.
E.
Fromager
,
S.
Knecht
, and
H. J. Aa.
Jensen
, “
Multi-configuration time-dependent density-functional theory based on range separation
,”
J. Chem. Phys.
138
,
084101
(
2013
).
22.
E. D.
Hedegård
,
F.
Heiden
,
S.
Knecht
,
E.
Fromager
, and
H. J. Aa.
Jensen
, “
Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions
,”
J. Chem. Phys.
139
,
184308
(
2013
).
23.
A.
Ferté
,
E.
Giner
, and
J.
Toulouse
, “
Range-separated multideterminant density-functional theory with a short-range correlation functional of the on-top pair density
,”
J. Chem. Phys.
150
,
084103
(
2019
).
24.
S.
Ghosh
,
P.
Verma
,
C. J.
Cramer
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Combining wave function methods with density functional theory for excited states
,”
Chem. Rev.
118
,
7249
7292
(
2018
).
25.
E.
Pastorczak
,
N. I.
Gidopoulos
, and
K.
Pernal
, “
Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle
,”
Phys. Rev. A
87
,
062501
(
2013
).
26.
M. M.
Alam
,
K.
Deur
,
S.
Knecht
, and
E.
Fromager
, “
Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states
,”
J. Chem. Phys.
147
,
204105
(
2017
).
27.
E. D.
Hedegård
,
J. M. H.
Olsen
,
S.
Knecht
,
J.
Kongsted
, and
H. J. Aa.
Jensen
, “
Polarizable embedding with a multiconfiguration short-range density functional theory linear response method
,”
J. Chem. Phys.
142
,
114113
(
2015
).
28.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
29.
M. A. L.
Marques
and
E. K. U.
Gross
, “
Time-dependent density functional theory
,”
Annu. Rev. Phys. Chem.
55
,
427
455
(
2004
).
30.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
323
(
2012
).
31.
C.
Adamo
and
D.
Jacquemin
, “
The calculations of excited-state properties with time-dependent density functional theory
,”
Chem. Soc. Rev.
42
,
845
856
(
2013
).
32.
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
95
(
2015
).
33.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
34.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
35.
M.
Hubert
,
E. D.
Hedegård
, and
H. J. Aa.
Jensen
, “
Investigation of multiconfigurational short-range density functional theory for electronic excitations in organic molecules
,”
J. Chem. Theory Comput.
12
,
2203
2213
(
2016
).
36.
M.
Hubert
,
H. J. Aa.
Jensen
, and
E. D.
Hedegård
, “
Excitation spectra of nucleobases with multiconfigurational density functional theory
,”
J. Phys. Chem. A
120
,
36
43
(
2016
).
37.
E. D.
Hedegård
, “
Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules
,”
Mol. Phys.
115
,
26
(
2016
).
38.
J.
Zhang
,
C.
Jiang
,
J. F. L.
Paulo
,
R. B.
Azevedo
,
H.
Zhang
, and
L. A.
Muehlmann
, “
An updated overview on the development of new photosensitizers for anticancer photodynamic therapy
,”
Acta Pharm. Sin. B
8
,
137
146
(
2018
).
39.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range–short-range separation of the electron-electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
40.
T.
Saue
and
T.
Helgaker
, “
Four-component relativistic Kohn–Sham theory
,”
J. Comput. Chem.
23
,
814
823
(
2002
).
41.
P.
Sałek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
, “
Density-functional theory of linear and nonlinear time-dependent molecular properties
,”
J. Chem. Phys.
117
,
9630
9645
(
2002
).
42.
J.
Olsen
,
D. L.
Yeager
, and
P.
Jørgensen
, “
Triplet excitation properties in large scale multiconfiguration linear response calculations
,”
J. Chem. Phys.
91
,
381
388
(
1989
).
43.
I.
Tunell
,
Z.
Rinkevicius
,
O.
Vahtras
,
P.
Sałek
,
T.
Helgaker
, and
H.
Ågren
, “
Density functional theory of nonlinear triplet response properties with applications to phosphorescence
,”
J. Chem. Phys.
119
,
11024
11034
(
2003
).
44.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
, “
Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy
,”
Int. J. Quantum Chem.
68
,
1
52
(
1998
).
45.
T.
Saue
and
H. J. Aa.
Jensen
, “
Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers
,”
J. Chem. Phys.
118
,
522
536
(
2003
).
46.
P.
Salek
,
T.
Helgaker
, and
T.
Saue
, “
Linear response at the 4-component relativistic density-functional level: Application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2
,”
Chem. Phys.
311
,
187
201
(
2005
).
47.
P.
Jørgensen
,
H. J. Aa.
Jensen
, and
J.
Olsen
, “
Linear response calculations for large scale multiconfiguration self-consistent field wave functions
,”
J. Chem. Phys.
89
,
3654
3661
(
1988
).
48.
I.
Tamm
, “
Relativistic interaction of elementary particles
,”
J. Phys. (USSR)
9
,
449
(
1945
).
49.
S. M.
Dancoff
, “
Non-adiabatic meson theory of nuclear forces
,”
Phys. Rev.
78
,
382
385
(
1950
).
50.
B.
Helmich-Paris
, “
CASSCF linear response calculations for large open-shell molecules
,”
J. Chem. Phys.
150
,
174121
(
2019
).
51.
See http://daltonprogram.org for DALTON, a molecular electronic-structure program, Release Dalton2018,
2018
.
52.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekstrm
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. Aa.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2013
).
53.
A.
Meurer
,
C. P.
Smith
,
M.
Paprocki
,
O.
Čertík
,
S. B.
Kirpichev
,
M.
Rocklin
,
A.
Kumar
,
S.
Ivanov
,
J. K.
Moore
,
S.
Singh
,
T.
Rathnayake
,
S.
Vig
,
B. E.
Granger
,
R. P.
Muller
,
F.
Bonazzi
,
H.
Gupta
,
S.
Vats
,
F.
Johansson
,
F.
Pedregosa
,
M. J.
Curry
,
A. R.
Terrel
,
Š.
Roučka
,
A.
Saboo
,
I.
Fernando
,
S.
Kulal
,
R.
Cimrman
, and
A.
Scopatz
, “
SymPy: Symbolic computing in python
,”
PeerJ Comput. Sci.
3
,
e103
(
2017
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
55.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
56.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
57.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
58.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
59.
J. C.
Slater
and
J. C.
Phillips
, “
Quantum theory of molecules and solids vol. 4: The self-consistent field for molecules and solids
,”
Phys. Today
27
(
12
),
49
50
(
1974
).
60.
H. J. Aa.
Jensen
,
P.
Jørgensen
,
H.
Ågren
, and
J.
Olsen
, “
Second-order Møller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self-consistent field calculations
,”
J. Chem. Phys.
88
,
3834
3839
(
1988
).
61.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
62.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
63.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
(
1996
).
64.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
(
2007
).
65.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks of electronically excited states: Basis set effects on CASPT2 results
,”
J. Chem. Phys.
133
,
174318
(
2010
).
66.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
67.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. M. S.
de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
68.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
5835
(
1994
).
69.
C.
Holzer
and
W.
Klopper
, “
Communication: A hybrid Bethe–Salpeter/time-dependent density-functional-theory approach for excitation energies
,”
J. Chem. Phys.
149
,
101101
(
2018
).
70.
M. J. G.
Peach
and
D. J.
Tozer
, “
Overcoming low orbital overlap and triplet instability problems in TDDFT
,”
J. Phys. Chem. A
116
,
9783
9789
(
2012
).
71.
M. J. G.
Peach
,
M. J.
Williamson
, and
D. J.
Tozer
, “
Influence of triplet instabilities in TDDFT
,”
J. Chem. Theory Comput.
7
,
3578
3585
(
2011
).
72.
M. J.
Peach
,
N.
Warner
, and
D. J.
Tozer
, “
On the triplet instability in TDDFT
,”
Mol. Phys.
111
,
1271
1274
(
2013
).
73.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
74.
C.
Hättig
,
G.
Schmitz
, and
J.
Koßmann
, “
Auxiliary basis sets for density-fitted correlated wavefunction calculations: Weighted core-valence and ECP basis sets for post-d elements
,”
Phys. Chem. Chem. Phys.
14
,
6549
(
2012
).

Supplementary Material

You do not currently have access to this content.