Locating saddle points on free energy surfaces is key in characterizing multistate transition events in complicated molecular-scale systems. Because these saddle points represent transition states, determining minimum free energy pathways to these saddles and measuring their free energies relative to their connected minima are further necessary, for instance, to estimate transition rates. In this work, we propose a new multistring version of the climbing string method in collective variables to locate all saddles and corresponding pathways on free energy surfaces. The method uses dynamic strings to locate saddles and static strings to keep a history of prior strings converged to saddles. Interaction of the dynamic strings with the static strings is used to avoid the convergence to already-identified saddles. Additionally, because the strings approximate curves in collective-variable space, and we can measure free energy along each curve, identification of any saddle’s two connected minima is guaranteed. We demonstrate this method to map the network of stationary points in the 2D and 4D free energy surfaces of alanine dipeptide and alanine tripeptide, respectively.

1.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
1998
), pp.
385
404
; eprint arXiv:1011.1669v3.
2.
R. A.
Miron
and
K. A.
Fichthorn
, “
The step and slide method for finding saddle points on multidimensional potential surfaces
,”
J. Chem. Phys.
115
,
8742
8747
(
2001
).
3.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
String method for the study of rare events
,”
Phys. Rev. B
66
,
052301
(
2002
); e-print arXiv:0205527 [cond-mat].
4.
L. J.
Munro
and
D. J.
Wales
, “
Defect migration in crystalline silicon
,”
Phys. Rev. B
59
,
3969
3980
(
1999
).
5.
Y.
Kumeda
,
D. J.
Wales
, and
L. J.
Munro
, “
Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory
,”
Chem. Phys. Lett.
341
,
185
194
(
2001
).
6.
G. T.
Barkema
and
N.
Mousseau
, “
Event-based relaxation of continuous disordered systems
,”
Phys. Rev. Lett.
77
,
4358
4361
(
1996
); e-print arXiv:9607156 [cond-mat].
7.
R.
Malek
and
N.
Mousseau
, “
Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique
,”
Phys. Rev. E
62
,
7723
7728
(
2000
); e-print arXiv:0006042 [cond-mat].
8.
E.
Cancès
,
F.
Legoll
,
M.-C.
Marinica
,
K.
Minoukadeh
, and
F.
Willaime
, “
Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces
,”
J. Chem. Phys.
130
,
114711
(
2009
); e-print arXiv:0806.4354.
9.
G.
Henkelman
and
H.
Jónsson
, “
A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
,”
J. Chem. Phys.
111
,
7010
7022
(
1999
).
10.
B.
Peters
,
A.
Heyden
,
A. T.
Bell
, and
A.
Chakraborty
, “
A growing string method for determining transition states: Comparison to the nudged elastic band and string methods
,”
J. Chem. Phys.
120
,
7877
7886
(
2004
).
11.
J.
Zhang
and
Q.
Du
, “
Shrinking dimer dynamics and its applications to saddle point search
,”
SIAM J. Numer. Anal.
50
,
1899
1921
(
2012
); e-print arXiv:1302.5877.
12.
J.
Zhang
and
Q.
Du
, “
Constrained shrinking dimer dynamics for saddle point search with constraints
,”
J. Comput. Phys.
231
,
4745
4758
(
2012
).
13.
G.
Crippen
and
H.
Scheraga
, “
Minimization of polypeptide energy
,”
Arch. Biochem. Biophys.
144
,
462
466
(
1971
).
14.
W.
E
and
X.
Zhou
, “
The gentlest ascent dynamics
,”
Nonlinearity
24
,
1831
1842
(
2011
); e-print arXiv:1011.0042.
15.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
); e-print arXiv:0402209 [cond-mat].
16.
W.
Ren
and
E.
Vanden-Eijnden
, “
A climbing string method for saddle point search
,”
J. Chem. Phys.
138
,
134105
(
2013
).
17.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
Comparison of methods for finding saddle points without knowledge of the final states
,”
J. Chem. Phys.
121
,
9776
9792
(
2004
).
18.
G.
Torrie
and
J.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
); e-print arXiv:NIHMS150003.
19.
E.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
, “
Constrained reaction coordinate dynamics for the simulation of rare events
,”
Chem. Phys. Lett.
156
,
472
477
(
1989
).
20.
M.
Sprik
and
G.
Ciccotti
, “
Free energy from constrained molecular dynamics
,”
J. Chem. Phys.
109
,
7737
7744
(
1998
).
21.
E.
Darve
and
A.
Pohorille
, “
Calculating free energies using average force
,”
J. Chem. Phys.
115
,
9169
9183
(
2001
).
22.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
23.
L.
Rosso
,
P.
Mináry
,
Z.
Zhu
, and
M. E.
Tuckerman
, “
On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles
,”
J. Chem. Phys.
116
,
4389
4402
(
2002
).
24.
J.
Hénin
and
C.
Chipot
, “
Overcoming free energy barriers using unconstrained molecular dynamics simulations
,”
J. Chem. Phys.
121
,
2904
2914
(
2004
).
25.
L.
Maragliano
and
E.
Vanden-Eijnden
, “
A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations
,”
Chem. Phys. Lett.
426
,
168
175
(
2006
); e-print arXiv:0712.2531v1.
26.
J. B.
Abrams
and
M. E.
Tuckerman
, “
Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations
,”
J. Phys. Chem. B
112
,
15742
15757
(
2008
).
27.
C. F.
Abrams
and
E.
Vanden-Eijnden
, “
Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
4961
4966
(
2010
); e-print arXiv:1408.1149.
28.
B. M.
Dickson
,
F.
Legoll
,
T.
Lelievre
,
G.
Stoltz
, and
P.
Fleurat-Lessard
, “
Free energy calculations: An efficient adaptive biasing potential method
,”
J. Phys. Chem. B
114
,
5823
5830
(
2010
); e-print arXiv:0911.2090.
29.
M.
Chen
,
T.-Q.
Yu
, and
M. E.
Tuckerman
, “
Locating landmarks on high-dimensional free energy surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3235
3240
(
2015
).
30.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
, “
String method in collective variables: Minimum free energy paths and isocommittor surfaces
,”
J. Chem. Phys.
125
,
024106
(
2006
).
31.
L.
Maragliano
and
E.
Vanden-Eijnden
, “
On-the-fly string method for minimum free energy paths calculation
,”
Chem. Phys. Lett.
446
,
182
190
(
2007
).
32.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Finite temperature string method for the study of rare events
,”
J. Phys. Chem. B
109
,
6688
6693
(
2005
); e-print arXiv:0205527 [cond-mat].
33.
N.
Foloppe
and
A. D.
MacKerell
, Jr.
, “
All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data
,”
J. Comput. Chem.
21
,
86
104
(
2000
).
34.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
35.
M.
Chen
,
M. A.
Cuendet
, and
M. E.
Tuckerman
, “
Heating and flooding: A unified approach for rapid generation of free energy surfaces
,”
J. Chem. Phys.
137
,
024102
(
2012
).
36.
D.
Nayar
and
C.
Chakravarty
, “
Free energy landscapes of alanine oligopeptides in rigid-body and hybrid water models
,”
J. Phys. Chem. B
119
,
11106
11120
(
2015
).
37.
J.
Esque
and
M.
Cecchini
, “
Accurate calculation of conformational free energy differences in explicit water: The confinement–solvation free energy approach
,”
J. Phys. Chem. B
119
,
5194
5207
(
2015
).
38.
M.
Bastian
,
S.
Heymann
,
M.
Jacomy
 et al, “
Gephi: An open source software for exploring and manipulating networks
,” in
International AAAI Conference on Weblogs and Social Media
(
Association for the Advancement of Artificial Intelligence
,
2009
), Vol. 8, pp.
361
362
.
39.
T.-Q.
Yu
,
M.
Lapelosa
,
E.
Vanden-Eijnden
, and
C. F.
Abrams
, “
Full kinetics of CO entry, internal diffusion, and exit in myoglobin from transition-path theory simulations
,”
J. Am. Chem. Soc.
137
,
3041
3050
(
2015
).

Supplementary Material

You do not currently have access to this content.