UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.

1.
A.
Bhattacherjee
and
S. R.
Leone
, “
Ultrafast x-ray transient absorption spectroscopy of gas-phase photochemical reactions: A new universal probe of photoinduced molecular dynamics
,”
Acc. Chem. Res.
51
,
3203
3211
(
2018
).
2.
A. R.
Attar
 et al, “
Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction
,”
Science
356
,
54
59
(
2017
).
3.
A. R.
Attar
,
A.
Bhattacherjee
, and
S. R.
Leone
, “
Direct observation of the transition-state region in the photodissociation of CH3I by femtosecond extreme ultraviolet transient absorption spectroscopy
,”
J. Phys. Chem. Lett.
6
(
24
),
5072
5077
(
2015
).
4.
A.
Bhattacherjee
,
C. D.
Pemmaraju
,
K.
Schnorr
,
A. R.
Attar
, and
S. R.
Leone
, “
Ultrafast intersystem crossing in acetylacetone via femtosecond x-ray transient absorption at the carbon K-edge
,”
J. Am. Chem. Soc.
139
,
16576
16583
(
2017
).
5.
K.
Schnorr
 et al, “
Tracing the 267 nm-induced radical formation in dimethyl disulfide using time-resolved x-ray absorption spectroscopy
,”
J. Phys. Chem. Lett.
10
,
1382
1387
(
2019
).
6.
A.
Bhattacherjee
 et al, “
Photoinduced heterocyclic ring opening of furfural: Distinct open-chain product identification by ultrafast x-ray transient absorption spectroscopy
,”
J. Am. Chem. Soc.
140
,
12538
12544
(
2018
).
7.
S. J.
Riley
and
K. R.
Wilson
, “
Excited fragments from excited molecules: Energy partitioning in the photodissociation of alkyl iodides
,”
Faraday Discuss. Chem. Soc.
53
,
132
146
(
1972
).
8.
S.
Rosenwaks
, “
Photodissociation of vibrationally excited CH3I
,” in
Vibrationally Mediated Photodissociation
(
Royal Society of Chemistry
,
2009
), Vol. 159.
9.
R.
Ogorzalek Loo
,
H.-P.
Haerri
,
G. E.
Hall
, and
P. L.
Houston
, “
Methyl rotation, vibration, and alignment from a multiphoton ionization study of the 266 nm photodissociation of methyl iodide
,”
J. Chem. Phys.
90
,
4222
4236
(
1989
).
10.
A.
García-Vela
,
R.
de Nalda
,
J.
Durá
,
J.
González-Vázquez
, and
L.
Bañares
, “
A 4D wave packet study of the CH3I photodissociation in the A-band. Comparison with femtosecond velocity map imaging experiments
,”
J. Chem. Phys.
135
,
154306
(
2011
).
11.
R.
de Nalda
,
J. G.
Izquierdo
,
J.
Durá
, and
L.
Bañares
, “
Femtosecond multichannel photodissociation dynamics of CH3I from the A band by velocity map imaging
,”
J. Chem. Phys.
126
,
021101
(
2007
).
12.
M. E.
Corrales
 et al, “
Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction
,”
Phys. Chem. Chem. Phys.
16
,
8812
8818
(
2014
).
13.
R.
de Nalda
 et al, “
A detailed experimental and theoretical study of the femtosecond A-band photodissociation of CH3I
,”
J. Chem. Phys.
128
,
244309
(
2008
).
14.
A. T. J. B.
Eppink
and
D. H.
Parker
, “
Methyl iodide A-band decomposition study by photofragment velocity imaging
,”
J. Chem. Phys.
109
,
4758
4767
(
1998
).
15.
S.
Yabushita
and
K.
Morokuma
, “
Potential energy surfaces for rotational excitation of CH3 product in photodissociation of CH3I
,”
Chem. Phys. Lett.
153
,
517
521
(
1988
).
16.
M.
Kamiya
and
T.
Taketsugu
, “
Ab initio surface hopping excited-state molecular dynamics approach on the basis of spin–orbit coupled states: An application to the A-band photodissociation of CH3I
,”
J. Comput. Chem.
40
,
456
463
(
2019
).
17.
A. T. J. B.
Eppink
and
D. H.
Parker
, “
Energy partitioning following photodissociation of methyl iodide in the A band: A velocity mapping study
,”
J. Chem. Phys.
110
,
832
844
(
1999
).
18.
M. L.
Murillo-Sánchez
 et al, “
Halogen-atom effect on the ultrafast photodissociation dynamics of the dihalomethanes CH2ICl and CH2BrI
,”
Phys. Chem. Chem. Phys.
20
,
20766
20778
(
2018
).
19.
R. S.
Mulliken
, “
Intensities in molecular electronic spectra X. Calculations on mixed-halogen, hydrogen halide, alkyl halide, and hydroxyl spectra
,”
J. Chem. Phys.
8
,
382
395
(
1940
).
20.
L.
Rui
 et al, “
Electronic curves crossing in methyl iodide by spin–orbit ab initio calculation
,”
Chin. Phys. Lett.
25
,
1644
1645
(
2008
).
21.
H. F.
King
,
R. E.
Stanton
,
H.
Kim
,
R. E.
Wyatt
, and
R. G.
Parr
, “
Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics
,”
J. Chem. Phys.
47
,
1936
1941
(
1967
).
22.
P. G.
Lykos
and
H. N.
Schmeising
, “
Maximum overlap atomic and molecular orbitals
,”
J. Chem. Phys.
35
,
288
293
(
1961
).
23.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
, “
Self-consistent field calculations of excited states using the maximum overlap method (MOM)
,”
J. Phys. Chem. A
112
,
13164
13171
(
2008
).
24.
K.
Lopata
,
B. E.
Van Kuiken
,
M.
Khalil
, and
N.
Govind
, “
Linear-response and real-time time-dependent density functional theory studies of core-level near-edge x-ray absorption
,”
J. Chem. Theory Comput.
8
,
3284
3292
(
2012
).
25.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
,”
J. Chem. Phys.
118
,
4807
4818
(
2003
).
26.
V.
Veryazov
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
How to select active space for multiconfigurational quantum chemistry?
,”
Int. J. Quantum Chem.
111
,
3329
3338
(
2011
).
27.
K.
Andersson
and
B. O.
Roos
, “
Multiconfigurational second-order perturbation theory
,” in
Modern Electronic Structure Theory
(
World Scientific Publishing Company
,
1995
), pp.
55
109
.
28.
V.
Sauri
 et al, “
Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: A benchmark study
,”
J. Chem. Theory Comput.
7
,
153
168
(
2011
).
29.
M.
Richter
,
P.
Marquetand
,
J.
González-Vázquez
,
I.
Sola
, and
L.
González
, “
SHARC: Ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings
,”
J. Chem. Theory Comput.
7
,
1253
1258
(
2011
).
30.
S.
Mai
,
P.
Marquetand
, and
L.
González
, “
Nonadiabatic dynamics: The SHARC approach
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1370
(
2018
).
31.
S.
Mai
,
M.
Richter
,
M.
Heindl
,
M. F. S. J.
Menger
,
A.
Atkins
,
M.
Ruckenbauer
,
F.
Plasser
,
M.
Oppel
,
P.
Marquetand
, and
L.
González
, SHARC2.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics,
2018
, available at https://sharc-md.org.
32.
S.
Mai
,
M.
Richter
,
P.
Marquetand
, and
L.
González
, “
The DNA nucleobase thymine in motion – Intersystem crossing simulated with surface hopping
,”
Chem. Phys.
482
,
9
15
(
2017
).
33.
J. P.
Zobel
,
J. J.
Nogueira
, and
L.
González
, “
Mechanism of ultrafast intersystem crossing in 2-nitronaphthalene
,”
Chem. - A Eur. J.
24
,
5379
5387
(
2018
).
34.
T.
Schnappinger
 et al, “
Ab initio molecular dynamics of thiophene: The interplay of internal conversion and intersystem crossing
,”
Phys. Chem. Chem. Phys.
19
,
25662
25670
(
2017
).
35.
R. J.
Squibb
 et al, “
Acetylacetone photodynamics at a seeded free-electron laser
,”
Nat. Commun.
9
,
63
(
2018
).
36.
I.
Josefsson
 et al, “
Ab initio calculations of x-ray spectra: Atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the L-edge spectra of transition metal complexes
,”
J. Phys. Chem. Lett.
3
,
3565
3570
(
2012
).
37.
M.
Lundberg
and
M. G.
Delcey
, “
Multiconfigurational approach to x-ray spectroscopy of transition metal complexes BT
,” in
Transition Metals in Coordination Environments: Computational Chemistry and Catalysis Viewpoints
, edited by
E.
Broclawik
,
T.
Borowski
, and
M.
Radoń
(
Springer International Publishing
,
2019
), pp.
185
217
.
38.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin–orbit coupling
,”
Chem. Phys. Lett.
357
,
230
240
(
2002
).
39.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
40.
B. A.
Hess
, “
Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators
,”
Phys. Rev. A
33
,
3742
3748
(
1986
).
41.
M.
Douglas
and
N. M.
Kroll
, “
Quantum electrodynamical corrections to the fine structure of helium
,”
Ann. Phys.
82
,
89
155
(
1974
).
42.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
, “
Main group atoms and dimers studied with a new relativistic ANO basis set
,”
J. Phys. Chem. A
108
,
2851
2858
(
2004
).
43.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
New relativistic ANO basis sets for transition metal atoms
,”
J. Phys. Chem. A
109
,
6575
6579
(
2005
).
44.
B. A.
Heß
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
, “
A mean-field spin-orbit method applicable to correlated wavefunctions
,”
Chem. Phys. Lett.
251
,
365
371
(
1996
).
45.
M.
Guo
,
L. K.
Sørensen
,
M. G.
Delcey
,
R. V.
Pinjari
, and
M.
Lundberg
, “
Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method
,”
Phys. Chem. Chem. Phys.
18
,
3250
3259
(
2016
).
46.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
47.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
, “
Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics
,”
J. Phys. Chem. A
104
,
5161
5175
(
2000
).
48.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
, “
Including quantum decoherence in surface hopping
,”
J. Chem. Phys.
133
,
134111
(
2010
).
49.
J. S.
Uejio
,
C. P.
Schwartz
,
R. J.
Saykally
, and
D.
Prendergast
, “
Effects of vibrational motion on core-level spectra of prototype organic molecules
,”
Chem. Phys. Lett.
467
,
195
199
(
2008
).
50.
W. P.
Hess
,
S. J.
Kohler
,
H. K.
Haugen
, and
S. R.
Leone
, “
Application of an InGaAsP diode laser to probe photodissociation dynamics: I* quantum yields from n- and i-C3F7I and CH3I by laser gain vs absorption spectroscopy
,”
J. Chem. Phys.
84
,
2143
2149
(
1986
).
51.
A. V.
Baklanov
,
M.
Aldener
,
B.
Lindgren
, and
U.
Sassenberg
, “
R2PI detection of the quantum yields of I(2P1/2) and I(2P3/2) in the photodissociation of C2F5I, n-C3F7I, i-C3F7I and CH3I
,”
Chem. Phys. Lett.
325
,
399
404
(
2000
).

Supplementary Material

You do not currently have access to this content.