We present an implementation of a scalable path deviation algorithm to find the k most kinetically relevant paths in a transition network, where each path is distinguished on the basis of having a distinct rate-limiting edge. The potential of the algorithm to identify distinct pathways that exist in separate regions of the configuration space is demonstrated for two benchmark systems with double-funnel energy landscapes, namely a model “three-hole” network embedded on a 2D potential energy surface and the cluster of 38 Lennard-Jones atoms (LJ38). The path cost profiles for the interbasin transitions of the two systems reflect the contrasting nature of the landscapes. There are multiple well-defined pathway ensembles for the three-hole system, whereas the transition in LJ38 effectively involves a single ensemble of pathways via disordered structures. A by-product of the algorithm is a set of edges that constitute a cut of the network, which is related to the discrete analog of a transition dividing surface. The algorithm ought to be useful for determining the existence, or otherwise, of competing mechanisms in large stochastic network models of dynamical processes and for assessing the kinetic relevance of distinguishable ensembles of pathways. This capability will provide insight into conformational transitions in biomolecules and other complex slow processes.

1.
D. J.
Wales
,
Mol. Phys.
100
,
3285
3305
(
2002
).
2.
D. J.
Wales
,
Mol. Phys.
102
,
891
908
(
2004
).
3.
D. J.
Wales
,
Philos. Trans. R. Soc., A
370
,
2877
2899
(
2012
).
4.
J. A.
Joseph
,
K.
Röder
,
D.
Chakraborty
,
R. G.
Mantell
, and
D. J.
Wales
,
Chem. Commun.
53
,
6974
6988
(
2017
).
5.
S. V.
Krivov
and
M.
Karplus
,
J. Phys. Chem. B
110
,
12689
12698
(
2006
).
6.
F.
Rao
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
9152
9157
(
2010
).
7.
N. M.
Amato
,
K. A.
Dill
, and
G.
Song
,
J. Comput. Biol.
10
,
239
255
(
2003
).
8.
L.
Gong
and
X.
Zhou
,
J. Phys. Chem. B
114
,
10266
10276
(
2010
).
9.
F.
Marinelli
,
F.
Pietrucci
,
A.
Laio
, and
S.
Piana
,
PLoS Comput. Biol.
5
,
e1000452
(
2009
).
10.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
425
(
2004
).
11.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
12.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, 1st ed., edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
The Netherlands
,
2014
).
13.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
144
(
2014
).
14.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
15.
F.
Noé
and
J. C.
Smith
, “
Transition networks: A unifying theme for molecular simulation and computer science
,” in
Mathematical Modeling of Biological Systems
, edited by
A.
Deutsch
,
L.
Brusch
,
J.
Byrne
,
G.
de Vries
, and
H.-P.
Herzel
(
Birkhäuser
,
Boston
,
2007
), Vol. I, pp.
125
144
.
16.
F.
Noé
and
S.
Fischer
,
Curr. Opin. Struct. Biol.
18
,
154
162
(
2008
).
17.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
18.
J. D.
Stevenson
and
D. J.
Wales
,
J. Chem. Phys.
141
,
041104
(
2014
).
19.
D. J.
Wales
and
P.
Salamon
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
617
622
(
2014
).
20.
D. J.
Wales
,
Annu. Rev. Phys. Chem.
69
,
401
425
(
2018
).
21.
J. P. K.
Doye
,
D. J.
Wales
, and
M. A.
Miller
,
J. Chem. Phys.
109
,
8143
8153
(
1998
).
22.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
110
,
6896
6906
(
1999
).
23.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
111
,
8417
8428
(
1999
).
24.
M. A.
Miller
,
J. P. K.
Doye
, and
D. J.
Wales
,
Phys. Rev. E
60
,
3701
3718
(
1999
).
25.
K.
Röder
,
J. A.
Joseph
,
B. E.
Husic
, and
D. J.
Wales
,
Adv. Theory Simul.
2
,
1800175
(
2019
).
26.
S. P.
Niblett
,
M.
Biedermann
,
D. J.
Wales
, and
V. K.
de Souza
,
J. Chem. Phys.
147
,
152726
(
2017
).
27.
E. W.
Dijkstra
,
Numer. Math.
1
,
269
271
(
1959
).
28.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
121
,
1080
1090
(
2004
).
29.
T. J. H.
Vlugt
and
B.
Smit
,
PhysChemComm
4
,
11
17
(
2001
).
30.
S. W.
Englander
and
L.
Mayne
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
15873
15880
(
2014
).
31.
S. W.
Englander
and
L.
Mayne
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8253
8258
(
2017
).
32.
W. A.
Eaton
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9759
E9760
(
2017
).
33.
D. R.
Shier
,
Networks
9
,
195
214
(
1979
).
34.
E. Q. V.
Martins
,
M. M. B.
Pascoal
, and
J. L. E.
Santos
,
Int. J. Found. Comput. Sci.
10
,
247
261
(
1999
).
35.
D. J.
Wales
and
J. P. K.
Doye
,
J. Chem. Phys.
119
,
12409
12416
(
2003
).
36.
37.
E. Q. V.
Martins
,
M. M. B.
Pascoal
, and
J. L. E.
Santos
, “
The k shortest loopless paths problem
,”
Universidade de Coimbra
,
1998
, See also: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.7554&rank=1.
38.
E. Q. V.
Martins
and
M. M. B.
Pascoal
,
Q. J. Belg., Fr. Ital. Oper. Res. Soc.
1
,
121
134
(
2003
).
39.
J. Y.
Yen
,
Manage. Sci.
17
,
712
716
(
1971
).
40.
V. M.
Jiménez
and
A.
Marzal
, “
Computing the k shortest paths: A new algorithm and experimental comparison
,” in
Algorithm Engineering: 3rd International Workshop, WAE’99
, edited by
J. S.
Vitter
and
C. D.
Zaroliagis
(
Springer Berlin, Heidelberg
,
London, UK
,
1999
), pp.
15
29
.
41.
J. M.
Carr
and
D. J.
Wales
, “
The energy landscape as a computational tool
,” in
Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale
, edited by
A.
Solov’yov
and
J.-P.
Connerade
(
Imperial College Press
,
London
,
2008
), pp.
321
330
.
42.
D. J.
Wales
,
J. Chem. Phys.
130
,
204111
(
2009
).
43.
A.
Chatterjee
and
A. F.
Voter
,
J. Chem. Phys.
132
,
194101
(
2010
).
44.
M.
Athènes
and
V. V.
Bulatov
,
Phys. Rev. Lett.
113
,
230601
(
2014
).
45.
J. M.
Carr
and
D. J.
Wales
,
Phys. Chem. Chem. Phys.
11
,
3341
3354
(
2009
).
46.
E. Q. V.
Martins
,
Eur. J. Oper. Res.
18
,
123
130
(
1984
).
47.
E. Q. V.
Martins
and
J. L. E.
Santos
, “
A new shortest paths ranking algorithm
,”
Universidade de Coimbra
,
1996
, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.7733.
48.
E. Q. V.
Martins
,
M. M. B.
Pascoal
, and
J. L. E.
Santos
,
Invest. Operacional
21
,
47
60
(
2001
).
49.
E. Q. V.
Martins
and
J. L. E.
Santos
,
Invest. Operacional Obscure Portugese J.
20
,
47
62
(
2000
).
50.
D.
Eppstein
, “
Finding the k shortest paths
,” in
Proceedings of the 35th IEEE Symposium FOCS
(
IEEE
,
1994
), pp.
154
165
.
51.
D.
Eppstein
,
SIAM J. Comput.
28
,
652
673
(
1999
).
52.
J. A.
Azevedo
,
M. E. O. S.
Costa
,
J. J. R. E. S.
Madeira
, and
E. Q. V.
Martins
,
Eur. J. Oper. Res.
69
,
97
106
(
1993
).
53.
J. A.
Azevedo
,
J. J. R. E. S.
Madeira
,
E. Q. V.
Martins
, and
F. M. A.
Pires
,
Eur. J. Oper. Res.
73
,
188
191
(
1994
).
54.
E. Q. V.
Martins
,
M. M. B.
Pascoal
, and
J. L. E.
Santos
, “
A new algorithm for ranking loopless paths
,”
Universidade de Coimbra
,
1997
, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.8238.
55.
D.
Frigioni
,
A.
Marchetti-Spaccamela
, and
U.
Nanni
,
J. Algorithms
34
,
251
281
(
2000
).
56.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geisller
,
Adv. Chem. Phys.
123
,
1
78
(
2002
).
57.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
58.
A.
Ma
and
A. R.
Dinner
,
J. Phys. Chem. B
109
,
6769
6779
(
2005
).
59.
R.
Elber
,
J. M.
Bello-Rivas
,
P.
Ma
,
A. E.
Cardenas
, and
A.
Fathizadeh
,
Entropy
19
,
219
(
2017
).
60.
F.
Noé
,
M.
Oswald
,
G.
Reinelt
,
S.
Fischer
, and
J. C.
Smith
,
Multiscale Model. Simul.
5
,
393
419
(
2006
).
61.
F.
Noé
,
D.
Krachtus
,
J. C.
Smith
, and
S.
Fischer
,
J. Chem. Theory Comput.
2
,
840
857
(
2006
).
62.
F.
Noé
,
F.
Ille
,
J. C.
Smith
, and
S.
Fischer
,
Proteins
59
,
534
544
(
2005
).
63.
S.
Huo
and
J. E.
Straub
,
J. Chem. Phys.
107
,
5000
5006
(
1997
).
64.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
65.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature
394
,
758
760
(
1998
).
66.
S.
Park
,
M. K.
Sener
,
D.
Lu
, and
K.
Schulten
,
J. Chem. Phys.
119
,
1313
1319
(
2003
).
67.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
125
,
084110
(
2006
).
68.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
Multiscale Model. Simul.
7
,
1192
1219
(
2009
).
69.
M. K.
Cameron
,
J. Stat. Phys.
152
,
493
518
(
2013
).
70.
M. K.
Cameron
,
J. Chem. Phys.
141
,
184113
(
2014
).
71.
M. K.
Cameron
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
156
,
427
454
(
2014
).
72.
M. K.
Cameron
,
Networks Heterog. Media
9
,
383
416
(
2014
).
73.
J. P.
Neirotti
,
F.
Calvo
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
10340
(
2000
).
74.
F.
Calvo
,
J. P.
Neirotti
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
10350
(
2000
).
75.
M.
Picciani
,
M.
Athenes
,
J.
Kurchan
, and
J.
Taileur
,
J. Chem. Phys.
135
,
034108
(
2011
).
76.
W.
Polak
and
A.
Patrykiejew
,
Phys. Rev. B
67
,
115402
(
2003
).
77.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
J. Chem. Phys.
114
,
7312
7329
(
2001
).
78.
J. P. K.
Doye
and
F.
Calvo
,
J. Chem. Phys.
116
,
8307
8317
(
2002
).
79.
Z.
Li
and
H. A.
Scheraga
,
Proc. Natl. Acad. Sci. U. S. A.
84
,
6611
6615
(
1987
).
80.
Z.
Li
and
H. A.
Scheraga
,
J. Mol. Struct.
179
,
333
352
(
1988
).
81.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
2082
2094
(
2004
).
82.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
7820
(
2004
).
83.
G.
Henkelman
and
H.
Jònsson
,
J. Chem. Phys.
111
,
7010
7222
(
1999
).
84.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jònsson
,
J. Chem. Phys.
113
,
9901
9904
(
2000
).
85.
G.
Henkelman
and
H.
Jònsson
,
J. Chem. Phys.
113
,
9978
9985
(
2000
).
86.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
3980
(
1999
).
87.
Y.
Zeng
,
P.
Xiao
, and
J.
Henkelman
,
J. Chem. Phys.
140
,
044115
(
2014
).
88.
R. G.
Mantell
,
C. E.
Pitt
, and
D. J.
Wales
,
J. Chem. Theory Comput.
12
,
6182
6191
(
2016
).
89.
D.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
528
(
1989
).
90.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2006
).
91.
J. M.
Carr
,
S. A.
Trygubenko
, and
D. J.
Wales
,
J. Chem. Phys.
122
,
234903
(
2005
).
92.
J. M.
Carr
and
D. J.
Wales
,
J. Chem. Phys.
123
,
234901
(
2005
).
93.
B.
Strodel
,
C. S.
Whittleston
, and
D. J.
Wales
,
J. Am. Chem. Soc.
129
,
16005
16014
(
2007
).
94.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Oxford, UK
,
2017
).
95.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
1517
(
1997
).
96.
S. V.
Krivov
and
M.
Karplus
,
J. Chem. Phys.
117
,
10894
10903
(
2002
).
97.
S. L.
Seyler
,
A.
Kumar
,
M. F.
Thorpe
, and
O.
Beckstein
,
PLoS Comput. Biol.
11
,
e1004568
(
2015
).
98.
A.
Berezhkovskii
,
G.
Hummer
, and
A.
Szabo
,
J. Chem. Phys.
130
,
205102
(
2009
).
99.
H.
Jung
,
K.
Okazaki
, and
G.
Hummer
,
J. Chem. Phys.
147
,
152716
(
2017
).
100.
S. A.
Trygubenko
and
D. J.
Wales
,
Mol. Phys.
104
,
1497
1507
(
2006
).
101.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
124
,
234110
(
2006
).
102.
A.-L.
Barabási
and
M.
Pósfai
,
Network Science
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2016
).
103.
J. P. K.
Doye
, “
The structure, thermodynamics and dynamics of atomic clusters
,” Ph.D. thesis,
University of Cambridge
,
1996
.
104.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
018104
(
2005
).
105.
J. W. R.
Morgan
,
D.
Mehta
, and
D. J.
Wales
,
Phys. Chem. Chem. Phys.
19
,
25498
25508
(
2017
).
106.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
105
(
2010
).
107.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
2896
(
2018
).
108.
D.
Shukla
,
C. X.
Hernández
,
J. K.
Weber
, and
V. S.
Pande
,
Acc. Chem. Res.
48
,
414
422
(
2015
).
109.
W.
Wang
,
S.
Cao
,
L.
Zhu
, and
X.
Huang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1343
(
2018
).
110.
E.
Vanden-Eijnden
, “
Transition path theory
,” in
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, edited by
M.
Ferrario
,
G.
Ciccotti
, and
K.
Binder
(
Springer
,
Berlin, Heidelberg
,
2006
), Vol. 1, pp.
453
493
.
111.
W.
E
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
123
,
503
523
(
2006
).
112.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
420
(
2010
).
113.
D.
Schultz
,
A. M.
Walczak
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
19165
19170
(
2008
).
114.
M. J.
Tse
,
B. K.
Chu
,
C. P.
Gallivan
, and
E. L.
Read
,
PLoS Comput. Biol.
14
,
e1006336
(
2018
).
115.
C.
Eskin
,
J. S.
Shamma
, and
J. S.
Weitz
,
Sci. Rep.
7
,
44122
(
2017
).
116.
R.
Gong
and
P.
Frank
, “
Systemic risk and the dynamics of temporary financial networks
,” SRC Discussion Paper (No 62),
Systemic Risk Centre, The London School of Economics and Political Science
,
2016
.

Supplementary Material

You do not currently have access to this content.