Methane hydrates can be preserved at ambient pressure, beyond their region of thermodynamic stability, by storing them at temperatures from 240 to 270 K. The origin of this anomalous self-preservation is the formation of an ice coating that covers the clathrate particles and prevents further loss of gas. While there have been several studies on self-preservation, the question of what is the mechanism by which ice nucleates on the decomposing clathrate hydrates has not yet been fully explained. Here, we use molecular simulations, thermodynamic analysis, and nucleation theory to investigate possible scenarios for the nucleation of ice: heterogeneous nucleation at the clathrate/vapor or clathrate/liquid interfaces and homogeneous nucleation from supercooled water. Our results indicate that clathrates cannot heterogeneously nucleate ice and that ice nucleation is due to the cooling of water at the decomposing clathrate/liquid interface, which suffices to trigger homogeneous ice nucleation. We find that the (111) face of the sII structure clathrate can bind to the (111) plane of cubic ice or the basal plane of hexagonal ice through domain matching, resulting in a weak binding that—while insufficient to promote heterogeneous ice nucleation—suffices to produce epitaxy and alignment between these crystals. We use thermodynamic relations, theory, and the contact angles of ice at the (111) sII clathrate/liquid interface to determine—for the first time—the interfacial free energy of this most favorable ice-clathrate interface, 59 ± 5 mJ/m2. We discuss the implications of our results for the feasibility of heterogeneous nucleation of gas clathrates at ice/vapor interfaces.

1.
E. D.
Sloan
, Jr.
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
(
2003
).
2.
M. D.
Max
,
Natural Gas Hydrate in Oceanic and Permafrost Environments
(
Springer Science & Business Media
,
2003
).
3.
A.
Falenty
,
W. F.
Kuhs
,
M.
Glockzin
, and
G.
Rehder
, “
‘Self-preservation’ of CH4 hydrates for gas transport technology: Pressure–temperature dependence and ice microstructures
,”
Energy Fuels
28
,
6275
6283
(
2014
).
4.
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Fundamentals and applications of gas hydrates
,”
Annu. Rev. Chem. Biomol. Eng.
2
,
237
257
(
2011
).
5.
V.
Krey
,
J. G.
Canadell
,
N.
Nakicenovic
,
Y.
Abe
,
H.
Andruleit
,
D.
Archer
,
A.
Grubler
,
N. T. M.
Hamilton
,
A.
Johnson
,
V.
Kostov
,
J.-F.
Lamarque
,
N.
Langhorne
,
E. G.
Nisbet
,
B.
O’Neill
,
K.
Riahi
,
M.
Riedel
,
W.
Wang
, and
V.
Yakushev
, “
Gas hydrates: Entrance to a methane age or climate threat?
,”
Environ. Res. Lett.
4
,
034007
(
2009
).
6.
E. B.
Burwicz
,
L.
Rüpke
, and
K.
Wallmann
, “
Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation
,”
Geochim. Cosmochim. Acta
75
,
4562
4576
(
2011
).
7.
E. D.
Sloan
, Jr.
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
(
CRC Press
,
New York
,
2007
).
8.
H. P.
Veluswamy
,
A.
Kumar
,
Y.
Seo
,
J. D.
Lee
, and
P.
Linga
, “
A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
,”
Appl. Energy
216
,
262
285
(
2018
).
9.
G.
Rehder
,
R.
Eckl
,
M.
Elfgen
,
A.
Falenty
,
R.
Hamann
,
N.
Kähler
,
W. F.
Kuhs
,
H.
Osterkamp
, and
C.
Windmeier
, “
Methane hydrate pellet transport using the self-preservation effect: A techno-economic analysis
,”
Energies
5
,
2499
2523
(
2012
).
10.
L. A.
Stern
,
S.
Circone
,
S. H.
Kirby
, and
W. B.
Durham
, “
Anomalous preservation of pure methane hydrate at 1 atm
,”
J. Phys. Chem. B
105
,
1756
1762
(
2001
).
11.
L. A.
Stern
,
S.
Circone
,
S. H.
Kirby
, and
W. B.
Durham
, “
Temperature, pressure, and compositional effects on anomalous or ‘self’ preservation of gas hydrates
,”
Can. J. Phys.
81
,
271
283
(
2003
).
12.
S.
Takeya
,
T.
Ebinuma
,
T.
Uchida
,
J.
Nagao
, and
H.
Narita
, “
Self-preservation effect and dissociation rates of CH4 hydrate
,”
J. Cryst. Growth
237
,
379
382
(
2002
).
13.
S.
Takeya
and
J. A.
Ripmeester
, “
Anomalous preservation of CH4 hydrate and its dependence on the morphology of hexagonal ice
,”
ChemPhysChem
11
,
70
73
(
2010
).
14.
S.
Takeya
and
J. A.
Ripmeester
, “
Dissociation behavior of clathrate hydrates to ice and dependence on guest molecules
,”
Angew. Chem., Int. Ed.
47
,
1276
1279
(
2008
).
15.
W.
Kuhs
,
G.
Genov
,
D.
Staykova
, and
T.
Hansen
, “
Ice perfection and onset of anomalous preservation of gas hydrates
,”
Phys. Chem. Chem. Phys.
6
,
4917
4920
(
2004
).
16.
V. S.
Yakushev
and
V. A.
Istomin
, paper presented at the
International Symposium on the Physics and Chemistry of Ice
,
Sapporo, Japan
,
1992
.
17.
A.
Falenty
and
W. F.
Kuhs
, “
‘Self-preservation’ of CO2 gas hydrates–surface microstructure and ice perfection
,”
J. Phys. Chem. B
113
,
15975
15988
(
2009
).
18.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
, “
Extent and relevance of stacking disorder in ‘ice Ic
,’”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
21264
(
2012
).
19.
M. S.
Madygulov
,
A. N.
Nesterov
,
A. M.
Reshetnikov
,
V. A.
Vlasov
, and
A. G.
Zavodovsky
, “
Study of gas hydrate metastability and its decay for hydrate samples containing unreacted supercooled liquid water below the ice melting point using pulse NMR
,”
Chem. Eng. Sci.
137
,
287
292
(
2015
).
20.
V. P.
Melnikov
,
A. N.
Nesterov
,
A. M.
Reshetnikov
, and
A. G.
Zavodovsky
, “
Evidence of liquid water formation during methane hydrates dissociation below the ice point
,”
Chem. Eng. Sci.
64
,
1160
1166
(
2009
).
21.
V. P.
Melnikov
,
A. N.
Nesterov
,
A. M.
Reshetnikov
,
V. A.
Istomin
, and
V. G.
Kwon
, “
Stability and growth of gas hydrates below the ice–hydrate–gas equilibrium line on the P–T phase diagram
,”
Chem. Eng. Sci.
65
,
906
914
(
2010
).
22.
Y.
Qiu
,
A.
Hudait
, and
V.
Molinero
, “
How size and aggregation of ice-binding proteins control their ice nucleation efficiency
,”
J. Am. Chem. Soc.
141
,
7439
7452
(
2019
).
23.
A.
Hudait
,
N.
Odendahl
,
Y.
Qiu
,
F.
Paesani
, and
V.
Molinero
, “
Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs
,”
J. Am. Chem. Soc.
140
,
4905
4912
(
2018
).
24.
S.
Lindow
,
E.
Lahue
,
A.
Govindarajan
,
N.
Panopoulos
, and
D.
Gies
, “
Localization of ice nucleation activity and the iceC gene product in Pseudomonas syringae and Escherichia coli
,”
Mol. Plant-Microbe Interact.
2
,
262
272
(
1989
).
25.
M.
Gavish
,
R.
Popovitz-Biro
,
M.
Lahav
, and
L.
Leiserowitz
, “
Ice nucleation by alcohols arranged in monolayers at the surface of water drops
,”
Science
250
,
973
975
(
1990
).
26.
Y.
Qiu
,
N.
Odendahl
,
A.
Hudait
,
R.
Mason
,
A. K.
Bertram
,
F.
Paesani
,
P. J.
DeMott
, and
V.
Molinero
, “
Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice
,”
J. Am. Chem. Soc.
139
,
3052
3064
(
2017
).
27.
H.
Ohno
,
I.
Oyabu
,
Y.
Iizuka
,
T.
Hondoh
,
H.
Narita
, and
J.
Nagao
, “
Dissociation behavior of C2H6 hydrate at temperatures below the ice point: Melting to liquid water followed by ice nucleation
,”
J. Phys. Chem. A
115
,
8889
8894
(
2011
).
28.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
,
19544
19547
(
2012
).
29.
M.
Matsumoto
and
H.
Tanaka
, “
On the structure selectivity of clathrate hydrates
,”
J. Phys. Chem. B
115
,
8257
8265
(
2011
).
30.
H.
Tanaka
and
M.
Matsumoto
, “
On the thermodynamic stability of clathrate hydrates V: Phase behaviors accommodating large guest molecules with new reference states
,”
J. Phys. Chem. B
115
,
14256
14262
(
2011
).
31.
M.
Matsumoto
and
H.
Tanaka
, “
Metastable polymorphs of clathrate hydrate
,”
J. Phys. Soc. Jpn.
81
,
SA005
(
2012
).
32.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates
,”
J. Am. Chem. Soc.
137
,
12079
12085
(
2015
).
33.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
,
11806
11811
(
2010
).
34.
L. C.
Jacobson
and
V.
Molinero
, “
Can amorphous nuclei grow crystalline clathrates? The size and crystallinity of critical clathrate nuclei
,”
J. Am. Chem. Soc.
133
,
6458
6463
(
2011
).
35.
A. H.
Nguyen
and
V.
Molinero
, “
Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm
,”
J. Phys. Chem. B
119
,
9369
9376
(
2015
).
36.
L. C.
Jacobson
and
V.
Molinero
, “
A methane–water model for coarse-grained simulations of solutions and clathrate hydrates
,”
J. Phys. Chem. B
114
,
7302
7311
(
2010
).
37.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Nucleation pathways of clathrate hydrates: Effect of guest size and solubility
,”
J. Phys. Chem. B
114
,
13796
13807
(
2010
).
38.
L. C.
Jacobson
,
M.
Matsumoto
, and
V.
Molinero
, “
Order parameters for the multistep crystallization of clathrate hydrates
,”
J. Chem. Phys.
135
,
074501
(
2011
).
39.
A. H.
Nguyen
,
L. C.
Jacobson
, and
V.
Molinero
, “
Structure of the clathrate/solution interface and mechanism of cross-nucleation of clathrate hydrates
,”
J. Phys. Chem. C
116
,
19828
19838
(
2012
).
40.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water
,”
J. Phys. Chem. B
113
,
10298
10307
(
2009
).
41.
A. A.
Bertolazzo
,
P. M.
Naullage
,
B.
Peters
, and
V.
Molinero
, “
The clathrate–water interface is oleophilic
,”
J. Phys. Chem. Lett.
9
,
3224
3231
(
2018
).
42.
P. M.
Naullage
,
A. A.
Bertolazzo
, and
V.
Molinero
, “
How do surfactants control the agglomeration of clathrate hydrates?
,”
ACS Cent. Sci.
5
,
428
439
(
2019
).
43.
M.
Walsh
,
C.
Koh
,
E.
Sloan
,
A.
Sum
, and
D.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
(
2009
).
44.
M. R.
Walsh
,
J. D.
Rainey
,
P. G.
Lafond
,
D.-H.
Park
,
G. T.
Beckham
,
M. D.
Jones
,
K.-H.
Lee
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
The cages, dynamics, and structuring of incipient methane clathrate hydrates
,”
Phys. Chem. Chem. Phys.
13
,
19951
(
2011
).
45.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
46.
S.
Liang
and
P. G.
Kusalik
, “
Crystal growth simulations of H2S hydrate
,”
J. Phys. Chem. B
114
,
9563
9571
(
2010
).
47.
P.
Pirzadeh
and
P. G.
Kusalik
, “
Molecular insights into clathrate hydrate nucleation at an ice–solution interface
,”
J. Am. Chem. Soc.
135
,
7278
7287
(
2013
).
48.
S.
Liang
and
P. G.
Kusalik
, “
Nucleation of gas hydrates within constant energy systems
,”
J. Phys. Chem. B
117
,
1403
1410
(
2013
).
49.
J.
Vatamanu
and
P. G.
Kusalik
, “
Observation of two-step nucleation in methane hydrates
,”
Phys. Chem. Chem. Phys.
12
,
15065
15072
(
2010
).
50.
J.
Vatamanu
and
P. G.
Kusalik
, “
Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face
,”
J. Phys. Chem. B
112
,
2399
2404
(
2008
).
51.
Y.
Bi
,
A.
Porras
, and
T.
Li
, “
Free energy landscape and molecular pathways of gas hydrate nucleation
,”
J. Chem. Phys.
145
,
211909
(
2016
).
52.
Y.
Bi
and
T.
Li
, “
Probing methane hydrate nucleation through the forward flux sampling method
,”
J. Phys. Chem. B
118
,
13324
(
2014
).
53.
A. H.
Nguyen
and
V.
Molinero
, “
Stability and metastability of bromine clathrate polymorphs
,”
J. Phys. Chem. B
117
,
6330
6338
(
2013
).
54.
A. H.
Nguyen
and
V.
Molinero
, “
Cross-nucleation between clathrate hydrate polymorphs: Assessing the role of stability, growth rate, and structure matching
,”
J. Chem. Phys.
140
,
084506
(
2014
).
55.
B.
Song
,
A. H.
Nguyen
, and
V.
Molinero
, “
Can guest occupancy in binary clathrate hydrates be tuned through control of the growth temperature?
,”
J. Phys. Chem. C
118
,
23022
23031
(
2014
).
56.
A. H.
Nguyen
,
M. A.
Koc
,
T. D.
Shepherd
, and
V.
Molinero
, “
Structure of the ice–clathrate interface
,”
J. Phys. Chem. C
119
,
4104
4117
(
2015
).
57.
P.
Pirzadeh
and
P. G.
Kusalik
, “
On understanding stacking fault formation in ice
,”
J. Am. Chem. Soc.
133
,
704
707
(
2011
).
58.
Y.
Qiu
and
V.
Molinero
, “
Why is it so difficult to identify the onset of ice premelting?
,”
J. Phys. Chem. Lett.
9
,
5179
5182
(
2018
).
59.
Y.
Zhang
,
P. G.
Debenedetti
,
R. K.
Prud’homm
, and
B. A.
Pethica
, “
Differential scanning calorimetry studies of clathrate hydrate formation
,”
J. Phys. Chem. B
108
,
16717
16722
(
2004
).
60.
R. O.
David
,
C.
Marcolli
,
J.
Fahrni
,
Y.
Qiu
,
Y. A.
Perez Sirkin
,
V.
Molinero
,
F.
Mahrt
,
D.
Brühwiler
,
U.
Lohmann
, and
Z. A.
Kanji
, “
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8184
(
2019
).
61.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
62.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
,
5262
5271
(
1985
).
63.
E. B.
Moore
,
E.
de la Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
, “
Freezing, melting and structure of ice in a hydrophilic nanopore
,”
Phys. Chem. Chem. Phys.
12
,
4124
4134
(
2010
).
64.
E. B.
Moore
and
V.
Molinero
, “
Growing correlation length in supercooled water
,”
J. Chem. Phys.
130
,
244505
(
2009
).
65.
E. B.
Moore
and
V.
Molinero
, “
Is it cubic? Ice crystallization from deeply supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
20008
20016
(
2011
).
66.
E. B.
Moore
,
J. T.
Allen
, and
V.
Molinero
, “
Liquid-ice coexistence below the melting temperature for water confined in hydrophilic and hydrophobic nanopores
,”
J. Phys. Chem. C
116
,
7507
7514
(
2012
).
67.
L.
Lupi
,
A.
Hudait
,
B.
Peters
,
M.
Grünwald
,
R. G.
Mullen
,
A. H.
Nguyen
, and
V.
Molinero
, “
Role of stacking disorder in ice nucleation
,”
Nature
551
,
218
(
2017
).
68.
L.
Lupi
,
A.
Hudait
, and
V.
Molinero
, “
Heterogeneous nucleation of ice on carbon surfaces
,”
J. Am. Chem. Soc.
136
,
3156
3164
(
2014
).
69.
L.
Lupi
,
N.
Kastelowitz
, and
V.
Molinero
, “
Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water
,”
J. Chem. Phys.
141
,
18C508
(
2014
).
70.
A.
Hudait
,
S.
Qiu
,
L.
Lupi
, and
V.
Molinero
, “
Free energy contributions and structural characterization of stacking disordered ices
,”
Phys. Chem. Chem. Phys.
18
,
9544
9553
(
2016
).
71.
P. M.
Naullage
,
L.
Lupi
, and
V.
Molinero
, “
Molecular recognition of ice by fully flexible molecules
,”
J. Phys. Chem. C
121
,
26949
26957
(
2017
).
72.
Y.
Qiu
,
L.
Lupi
, and
V.
Molinero
, “
Is water at the graphite interface vapor-like or ice-like?
,”
J. Phys. Chem. B
122
,
3626
3634
(
2018
).
73.
J.
Lu
,
C.
Chakravarty
, and
V.
Molinero
, “
Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models
,”
J. Chem. Phys.
144
,
234507
(
2016
).
74.
T. D.
Shepherd
,
M. A.
Koc
, and
V.
Molinero
, “
The quasi-liquid layer of ice under conditions of methane clathrate formation
,”
J. Phys. Chem. C
116
,
12172
12180
(
2012
).
75.
R.
Baron
and
V.
Molinero
, “
Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations
,”
J. Chem. Theory Comput.
8
,
3696
3704
(
2012
).
76.
J.
Lu
,
Y.
Qiu
,
R.
Baron
, and
V.
Molinero
, “
Coarse-graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to monatomic anisotropic water models using relative entropy minimization
,”
J. Chem. Theory Comput.
10
,
4104
4120
(
2014
).
77.
A.
Hudait
,
D. R.
Moberg
,
Y.
Qiu
,
N.
Odendahl
,
F.
Paesani
, and
V.
Molinero
, “
Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8266
8271
(
2018
).
78.
A.
Hudait
,
M. T.
Allen
, and
V.
Molinero
, “
Sink or swim: Ions and organics at the ice–air interface
,”
J. Am. Chem. Soc.
139
,
10095
10103
(
2017
).
79.
A.
Hudait
and
V.
Molinero
, “
Ice crystallization in ultrafine water–salt aerosols: Nucleation, ice-solution equilibrium, and internal structure
,”
J. Am. Chem. Soc.
136
,
8081
8093
(
2014
).
80.
P. M.
Naullage
,
Y.
Qiu
, and
V.
Molinero
, “
What controls the limit of supercooling and superheating of pinned ice surfaces?
,”
J. Phys. Chem. Lett.
9
,
1712
1720
(
2018
).
81.
N.
Kastelowitz
and
V.
Molinero
, “
Ice–Liquid oscillations in nanoconfined water
,”
ACS Nano
12
,
8234
8239
(
2018
).
82.
J. C.
Johnston
and
V.
Molinero
, “
Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures
,”
J. Am. Chem. Soc.
134
,
6650
6659
(
2012
).
83.
L. C.
Jacobson
,
R. M.
Kirby
, and
V.
Molinero
, “
How short is too short for the interactions of a water potential? Exploring the parameter space of a coarse-grained water model using uncertainty quantification
,”
J. Phys. Chem. B
118
,
8190
8202
(
2014
).
84.
L.
Xu
and
V.
Molinero
, “
Is there a liquid–liquid transition in confined water?
,”
J. Phys. Chem. B
115
,
14210
14216
(
2011
).
85.
L.
Xu
and
V.
Molinero
, “
Liquid–vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics
,”
J. Phys. Chem. B
114
,
7320
7328
(
2010
).
86.
B.
Song
and
V.
Molinero
, “
Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water
,”
J. Chem. Phys.
139
,
054511
(
2013
).
87.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
88.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
89.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
90.
B.
Cheng
,
C.
Dellago
, and
M.
Ceriotti
, “
Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics
,”
Phys. Chem. Chem. Phys.
20
,
28732
28740
(
2018
).
91.
B.
Cheng
and
M.
Ceriotti
, “
Bridging the gap between atomistic and macroscopic models of homogeneous nucleation
,”
J. Chem. Phys.
146
,
034106
(
2017
).
92.
H.
Eslami
,
N.
Khanjari
, and
F.
Müller-Plathe
, “
A local order parameter-based method for simulation of free energy barriers in crystal nucleation
,”
J. Chem. Theory Comput.
13
,
1307
1316
(
2017
).
93.
G. A.
Tribello
,
F.
Giberti
,
G. C.
Sosso
,
M.
Salvalaglio
, and
M.
Parrinello
, “
Analyzing and driving cluster formation in atomistic simulations
,”
J. Chem. Theory Comput.
13
,
1317
1327
(
2017
).
94.
M.
Salvalaglio
,
M.
Mazzotti
, and
M.
Parrinello
, “
Urea homogeneous nucleation mechanism is solvent dependent
,”
Faraday Discuss.
179
,
291
307
(
2015
).
95.
F.
Giberti
,
M.
Salvalaglio
,
M.
Mazzotti
, and
M.
Parrinello
, “
Insight into the nucleation of urea crystals from the melt
,”
Chem. Eng. Sci.
121
,
51
59
(
2015
).
96.
B.
Cheng
,
G. A.
Tribello
, and
M.
Ceriotti
, “
Solid-liquid interfacial free energy out of equilibrium
,”
Phys. Rev. B
92
,
180102
(
2015
).
97.
A.
Hudait
,
Y.
Qiu
,
N.
Odendahl
, and
V.
Molinero
, “
Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice nucleating proteins to ice
,”
J. Am. Chem. Soc.
141
,
7887
7898
(
2019
).
98.
J.
Kästner
, “
Umbrella sampling
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
932
942
(
2011
).
99.
A.
Grossfield
, WHAM: The Weighted Histogram Analysis Method, version 2.0.6, http://membrane.urmc.rochester.edu/content/wham.
100.
R.
Cabriolu
and
T.
Li
, “
Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation
,”
Phys. Rev. E
91
,
052402
(
2015
).
101.
L.
Lupi
,
B.
Peters
, and
V.
Molinero
, “
Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism
,”
J. Chem. Phys.
145
,
211910
(
2016
).
102.
L.
Lupi
,
R.
Hanscam
,
Y.
Qiu
, and
V.
Molinero
, “
Reaction coordinate for ice crystallization on a soft surface
,”
J. Phys. Chem. Lett.
8
,
4201
4205
(
2017
).
103.
M. H.
Factorovich
,
E.
Gonzalez Solveyra
,
V.
Molinero
, and
D. A.
Scherlis
, “
Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis
,”
J. Phys. Chem. C
118
,
16290
16300
(
2014
).
104.
I.
Pickering
,
M.
Paleico
,
Y. A.
Perez Sirkin
,
D. A.
Scherlis
, and
M. H.
Factorovich
, “
Grand canonical investigation of the quasi liquid layer of ice: Is it liquid?
,”
J. Phys. Chem. B
122
,
4880
(
2018
).
105.
T.
Kume
,
T.
Ban
,
F.
Ohashi
,
H. S.
Jha
,
T.
Sugiyama
,
T.
Ogura
,
S.
Sasaki
, and
S.
Nonomura
, “
A thin film of a type II Ge clathrate epitaxially grown on a Ge substrate
,”
CrystEngComm
18
,
5630
5638
(
2016
).
106.
K.
Sakai
,
H.
Takeshita
,
T.
Haraguchi
,
H.
Suzuki
,
F.
Ohashi
,
T.
Kume
,
A.
Fukuyama
,
S.
Nonomura
, and
T.
Ikari
, “
Cross-sectional transmission electron microscope observation of Si clathrate thin films grown on Si (111) substrates
,”
Thin Solid Films
621
,
32
35
(
2017
).
107.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
, “
Homogeneous ice nucleation from supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
19807
19813
(
2011
).
108.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
Ice–water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models as obtained from the Mold integration technique
,”
J. Phys. Chem. B
120
,
8068
8075
(
2016
).
109.
R.
Anderson
,
M.
Llamedo
,
B.
Tohidi
, and
R. W.
Burgass
, “
Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica
,”
J. Phys. Chem. B
107
,
3507
3514
(
2003
).
110.
B. J.
Murray
,
D.
O’Sullivan
,
J. D.
Atkinson
, and
M. E.
Webb
, “
Ice nucleation by particles immersed in supercooled cloud droplets
,”
Chem. Soc. Rev.
41
,
6519
6554
(
2012
).
111.
Y. P.
Handa
, “
Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter
,”
J. Chem. Thermodyn.
18
,
915
921
(
1986
).
112.
B.
Wang
,
Z.
Fan
,
P.
Wang
,
Y.
Liu
,
J.
Zhao
, and
Y.
Song
, “
Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation
,”
Appl. Energy
227
,
624
633
(
2018
).
113.
S. A.
Bagherzadeh
,
P.
Englezos
,
S.
Alavi
, and
J. A.
Ripmeester
, “
Molecular simulation of non-equilibrium methane hydrate decomposition process
,”
J. Chem. Thermodyn.
44
,
13
19
(
2012
).
114.
S. A.
Bagherzadeh
,
S.
Alavi
,
J. A.
Ripmeester
, and
P.
Englezos
, “
Evolution of methane during gas hydrate dissociation
,”
Fluid Phase Equilib.
358
,
114
120
(
2013
).
115.
S. A.
Bagherzadeh
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
,”
J. Chem. Phys.
142
,
214701
(
2015
).
116.
D.
Bai
,
D.
Zhang
,
X.
Zhang
, and
G.
Chen
, “
Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances
,”
Sci. Rep.
5
,
14599
(
2015
).
117.
S.
Alavi
and
J. A.
Ripmeester
, “
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
,”
J. Chem. Phys.
132
,
144703
(
2010
).
118.
L. A.
Stern
,
S.
Circone
,
S. H.
Kirby
, and
W. B.
Durham
, “
Reply to ‘Comments on “Anomalous preservation of pure methane hydrate at 1 atm
’”,”
J. Phys. Chem. B
106
,
228
230
(
2002
).
119.
J. W.
Wilder
and
D. H.
Smith
, “
Comments on ‘Anomalous preservation of pure methane hydrate at 1 atm
,’”
J. Phys. Chem. B
106
,
226
227
(
2002
).
120.
C. A.
Angell
,
W. J.
Sichina
, and
M.
Oguni
, “
Heat capacity of water at extremes of supercooling and superheating
,”
J. Phys. Chem.
86
,
998
1002
(
1982
).
121.
R. J.
Speedy
, “
Thermodynamic properties of supercooled water at 1 atm
,”
J. Phys. Chem.
91
,
3354
3358
(
1987
).
122.
G. G.
Poon
and
B.
Peters
, “
A stochastic model for nucleation in the boundary layer during solvent freeze-concentration
,”
Cryst. Growth Des.
13
,
4642
4647
(
2013
).
123.
D.
Rozmanov
and
P. G.
Kusalik
, “
Anisotropy in the crystal growth of hexagonal ice, I h
,”
J. Chem. Phys.
137
,
094702
(
2012
).
124.
D.
Kashchiev
and
A.
Firoozabadi
, “
Driving force for crystallization of gas hydrates
,”
J. Cryst. Growth
241
,
220
230
(
2002
).
You do not currently have access to this content.