Metal oxide supports often play an active part in heterogeneous catalysis by moderating both the structure and the electronic properties of the metallic catalyst particle. In order to provide some fundamental understanding on these effects, we present here a density functional theory (DFT) investigation of the binding of O and CO on Pt nanoparticles supported on titania (anatase) surfaces. These systems are complex, and in order to develop realistic models, here, we needed to perform DFT calculations with up to ∼1000 atoms. By performing full geometry relaxations at each stage, we avoid any effects of “frozen geometry” approximations. In terms of the interaction of the Pt nanoparticles with the support, we find that the surface deformation of the anatase support contributes greatly to the adsorption of each nanoparticle, especially for the anatase (001) facet. We attempt to separate geometric and electronic effects and find a larger contribution to ligand binding energy arising from the former. Overall, we show an average weakening (compared to the isolated nanoparticle) of ∼0.1 eV across atop, bridge and hollow binding sites on supported Pt55 for O and CO, and a preservation of site preference. Stronger effects are seen for O on Pt13, which is heavily deformed by anatase supports. In order to rationalize our results and examine methods for faster characterization of metal catalysts, we make use of electronic descriptors, including the d-band center and an electronic density based descriptor. We expect that the approach followed in this study could be applied to study other supported metal catalysts.

1.
J.
Seth
,
P.
Dubey
,
V. R.
Chaudhari
, and
B. L. V.
Prasad
, “
Preparation of metal oxide supported catalysts and their utilization for understanding the effect of a support on the catalytic activity
,”
New J. Chem.
42
,
402
410
(
2017
).
2.
M. M.
Schubert
,
V.
Plzak
,
J.
Garche
, and
R. J.
Behm
, “
Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas
,”
Catal. Lett.
76
,
143
150
(
2001
).
3.
D. A.
Peña
,
B. S.
Uphade
, and
P. G.
Smirniotis
, “
TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals
,”
J. Catal.
221
,
421
431
(
2004
).
4.
E.
Iglesia
, “
Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts
,”
Appl. Catal., A
161
,
59
78
(
1997
).
5.
S.
Aranifard
,
S. C.
Ammal
, and
A.
Heyden
, “
On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts
,”
J. Catal.
309
,
314
324
(
2014
).
6.
H. J.
Park
,
S. H.
Park
,
J. M.
Sohn
,
J.
Park
,
J.-K.
Jeon
,
S.-S.
Kim
, and
Y.-K.
Park
, “
Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts
,”
Bioresour. Technol.
101
,
S101
S103
(
2010
), supplement issue on Recent Developments of Biomass Conversion Technologies.
7.
M.
Haruta
, “
Catalysis of gold nanoparticles deposited on metal oxides
,”
CATTECH
6
,
102
115
(
2002
).
8.
E. A.
Walker
,
D.
Mitchell
,
G. A.
Terejanu
, and
A.
Heyden
, “
Identifying active sites of the water–gas shift reaction over titania supported platinum catalysts under uncertainty
,”
ACS Catal.
8
,
3990
3998
(
2018
).
9.
R.
Zennaro
,
M.
Tagliabue
, and
C. H.
Bartholomew
, “
Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt
,”
Catal. Today
58
,
309
319
(
2000
).
10.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
11.
A. L.
Linsebigler
,
G.
Lu
, and
J. T.
Yates
, “
Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results
,”
Chem. Rev.
95
,
735
758
(
1995
).
12.
S.
Overbury
,
L.
Ortiz-Soto
,
H.
Zhu
,
B.
Lee
,
M. D.
Amiridis
, and
S.
Dai
, “
Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions
,”
Catal. Lett.
95
,
99
106
(
2004
).
13.
K. I.
Hadjiivanov
and
D. G.
Klissurski
, “
Surface chemistry of titania (anatase) and titania-supported catalysts
,”
Chem. Soc. Rev.
25
,
61
69
(
1996
).
14.
H.
Zhang
and
J. F.
Banfield
, “
Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2
,”
J. Phys. Chem. B
104
,
3481
3487
(
2000
).
15.
M. R.
Ranade
,
A.
Navrotsky
,
H. Z.
Zhang
,
J. F.
Banfield
,
S. H.
Elder
,
A.
Zaban
,
P. H.
Borse
,
S. K.
Kulkarni
,
G. S.
Doran
, and
H. J.
Whitfield
, “
Energetics of nanocrystalline TiO2
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
6476
6481
(
2002
).
16.
F.
Labat
,
P.
Baranek
,
C.
Domain
,
C.
Minot
, and
C.
Adamo
, “
Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals
,”
J. Chem. Phys.
126
,
154703
(
2007
).
17.
H.
Zhang
and
J. F.
Banfield
, “
Thermodynamic analysis of phase stability of nanocrystalline titania
,”
J. Mater. Chem.
8
,
2073
2076
(
1998
).
18.
J.
Aarons
,
M.
Sarwar
,
D.
Thompsett
, and
C.-K.
Skylaris
, “
Perspective: Methods for large-scale density functional calculations on metallic systems
,”
J. Chem. Phys.
145
,
220901
(
2016
).
19.
F.
Baletto
and
R.
Ferrando
, “
Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects
,”
Rev. Mod. Phys.
77
,
371
423
(
2005
).
20.
C.
Buzea
,
I. I.
Pacheco
, and
K.
Robbie
, “
Nanomaterials and nanoparticles: Sources and toxicity
,”
Biointerphases
2
,
MR17
MR71
(
2007
).
21.
B.
Hammer
and
J. K.
Nørskov
, “
Theoretical surface science and catalysis—Calculations and concepts
,” in
Impact of Surface Science on Catalysis
, Advances in Catalysis Vol. 45 (
Academic Press
,
2000
), pp.
71
129
.
22.
H.
Toulhoat
and
P.
Raybaud
, “
Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors
,”
J. Catal.
216
,
63
72
(
2003
), 40th Anniversary Commemorative Issue.
23.
J. K.
Nørskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
, “
Towards the computational design of solid catalysts
,”
Nat. Chem.
1
,
37
46
(
2009
).
24.
C. J. H.
Jacobsen
,
S.
Dahl
,
B. S.
Clausen
,
S.
Bahn
,
A.
Logadottir
, and
J. K.
Nørskov
, “
Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts
,”
J. Am. Chem. Soc.
123
,
8404
8405
(
2001
).
25.
S. J.
Kwon
,
J. H.
Park
,
K. Y.
Koo
,
W. L.
Yoon
, and
K. B.
Yi
, “
Enhanced catalytic performance of Pt/TiO2 catalyst in water gas shift reaction by incorporation of PRGO
,”
Catal. Today
293-294
,
113
121
(
2017
), special issue of International Symposium on Catalytic Conversion of Energy and Resources.
26.
O. T.
Holton
and
J. W.
Stevenson
, “
The role of platinum in proton exchange membrane fuel cells
,”
Platinum Met. Rev.
57
,
259
(
2013
).
27.
L. G.
Verga
,
A. E.
Russell
, and
C.-K.
Skylaris
, “
Ethanol, O, and CO adsorption on Pt nanoparticles: Effects of nanoparticle size and graphene support
,”
Phys. Chem. Chem. Phys.
20
,
25918
25930
(
2018
).
28.
J.
Aarons
,
L.
Jones
,
A.
Varambhia
,
K. E.
MacArthur
,
D.
Ozkaya
,
M.
Sarwar
,
C.-K.
Skylaris
, and
P. D.
Nellist
, “
Predicting the oxygen-binding properties of platinum nanoparticle ensembles by combining high-precision electron microscopy and density functional theory
,”
Nano Lett.
17
,
4003
4012
(
2017
).
29.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
, “
Introducing ONETEP: Linear-scaling density functional simulations on parallel computers
,”
J. Chem. Phys.
122
,
084119
(
2005
).
30.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.—Cryst. Mater.
220
,
567
570
(
2009
).
31.
N.
Marzari
,
D.
Vanderbilt
, and
M. C.
Payne
, “
Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators
,”
Phys. Rev. Lett.
79
,
1337
1340
(
1997
).
32.
Á.
Ruiz-Serrano
and
C.-K.
Skylaris
, “
A variational method for density functional theory calculations on metallic systems with thousands of atoms
,”
J. Chem. Phys.
139
,
054107
(
2013
).
33.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
34.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
, “
Pseudopotentials for high-throughput DFT calculations
,”
Comput. Mater. Sci.
81
,
446
452
(
2014
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
36.
Y.
Zhang
and
W.
Yang
, “
Comment on ‘Generalized gradient approximation made simple
,’”
Phys. Rev. Lett.
80
,
890
(
1998
).
37.
M.
Rezaee
,
S. M. M.
Khoie
, and
K. H.
Liu
, “
The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation
,”
CrystEngComm
13
,
5055
5061
(
2011
).
38.
J. R.
Kitchin
,
J. K.
Nørskov
,
M. A.
Barteau
, and
J. G.
Chen
, “
Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals
,”
J. Chem. Phys.
120
,
10240
10246
(
2004
).
39.
R. J.
Nicholls
,
A. J.
Morris
,
C. J.
Pickard
, and
J. R.
Yates
, “
OptaDOS—A new tool for EELS calculations
,”
J. Phys.: Conf. Ser.
371
,
012062
(
2012
).
40.
J. K.
Burdett
,
T.
Hughbanks
,
G. J.
Miller
,
J. W.
Richardson
, and
J. V.
Smith
, “
Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K
,”
J. Am. Chem. Soc.
109
,
3639
3646
(
1987
).
41.
M.
Lazzeri
,
A.
Vittadini
, and
A.
Selloni
, “
Structure and energetics of stoichiometric TiO2 anatase surfaces
,”
Phys. Rev. B
63
,
155409
(
2001
).
42.
A.
Vittadini
,
M.
Casarin
, and
A.
Selloni
, “
Chemistry of and on TiO2-anatase surfaces by DFT calculations: A partial review
,”
Theor. Chem. Acc.
117
,
663
671
(
2007
).
43.
K.
Rossi
,
T.
Ellaby
,
L. O.
Paz-Borbón
,
I.
Atanasov
,
L.
Pavan
, and
F.
Baletto
, “
Melting of large Pt@MgO(1 0 0) icosahedra
,”
J. Phys.: Condens. Matter
29
,
145402
(
2017
).
44.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
45.
L.
Li
,
A. H.
Larsen
,
N. A.
Romero
,
V. A.
Morozov
,
C.
Glinsvad
,
F.
Abild-Pedersen
,
J.
Greeley
,
K. W.
Jacobsen
, and
J. K.
Nørskov
, “
Investigation of catalytic finite-size-effects of platinum metal clusters
,”
J. Phys. Chem. Lett.
4
,
222
226
(
2013
).
46.
B.
Hammer
and
J. K.
Nørskov
, “
Electronic factors determining the reactivity of metal surfaces
,”
Surf. Sci.
343
,
211
220
(
1995
).
47.
J.
Greeley
,
J. K.
Nørskov
, and
M.
Mavrikakis
, “
Electronic structure and catalysis on metal surfaces
,”
Annu. Rev. Phys. Chem.
53
,
319
348
(
2002
).
48.
A.
Vojvodic
,
J. K.
Nørskov
, and
F.
Abild-Pedersen
, “
Electronic structure effects in transition metal surface chemistry
,”
Top. Catal.
57
,
25
32
(
2014
).
49.
G. A.
Tritsaris
,
J.
Greeley
,
J.
Rossmeisl
, and
J. K.
Nørskov
, “
Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt
,”
Catal. Lett.
141
,
909
913
(
2011
).
50.
P. J.
Feibelman
,
B.
Hammer
,
J. K.
Nørskov
,
F.
Wagner
,
M.
Scheffler
,
R.
Stumpf
,
R.
Watwe
, and
J.
Dumesic
, “
The CO/Pt(111) puzzle
,”
J. Phys. Chem. B
105
,
4018
4025
(
2001
).
51.
M.
Lynch
and
P.
Hu
, “
A density functional theory study of CO and atomic oxygen chemisorption on Pt(111)
,”
Surf. Sci.
458
,
1
14
(
2000
).
52.
J. V.
Barth
, “
Transport of adsorbates at metal surfaces: From thermal migration to hot precursors
,”
Surf. Sci. Rep.
40
,
75
149
(
2000
).
53.
J.-X.
Liu
,
I. A. W.
Filot
,
Y.
Su
,
B.
Zijlstra
, and
E. J. M.
Hensen
, “
Optimum particle size for gold-catalyzed CO oxidation
,”
J. Phys. Chem. C
122
,
8327
8340
(
2018
).
54.
L. G.
Verga
,
J.
Aarons
,
M.
Sarwar
,
D.
Thompsett
,
A. E.
Russell
, and
C.-K.
Skylaris
, “
Effect of graphene support on large Pt nanoparticles
,”
Phys. Chem. Chem. Phys.
18
,
32713
32722
(
2016
).

Supplementary Material

You do not currently have access to this content.