A general-order stochastic perturbation algorithm is obtained from the order-by-order expansion of the imaginary-time evolution of a configuration interaction wave function. A truncation of configuration space that is required for the practical treatment of the perturbative corrections, however, does not preserve size-consistency as is the case for a truncated configuration interaction. To circumvent this problem, we formulate a linked variant of stochastic perturbation theory based on the coupled-cluster ansatz. The implementation based on the linearized coupled-cluster is compared with several full configuration interaction results. We also compare the results with those obtained from deterministic coupled-cluster and many-body perturbation theories.

1.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rencurel
,
J. Chem. Phys.
58
,
5745
5759
(
1973
).
2.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
58
(
1974
).
3.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
4.
R. J.
Harrison
,
J. Chem. Phys.
94
,
5021
(
1991
).
5.
A.
Povill
,
J.
Rubio
, and
F.
Illas
,
Theor. Chim. Acta
82
,
229
(
1992
).
6.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
Can. J. Chem.
91
,
879
(
2013
).
7.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
J. Chem. Phys.
142
,
044115
(
2015
).
8.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
144
,
161106
(
2016
).
9.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
,
J. Chem. Phys.
145
,
044112
(
2016
).
10.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
3674
(
2016
).
11.
W.
Liu
and
M. R.
Hoffman
,
J. Chem. Theory Comput.
12
,
1169
(
2016
).
12.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Theory Comput.
13
,
5354
(
2017
).
13.
J. B.
Schriber
,
K. P.
Hannon
,
C.
Li
, and
F. A.
Evangelista
,
J. Chem. Theory Comput.
14
,
6295
(
2018
).
14.
Y.
Garniron
,
A.
Scemama
,
E.
Giner
,
M.
Caffarel
, and
P.-F.
Loos
,
J. Chem. Phys.
149
,
064103
(
2018
).
15.
Y.
Garniron
 et al,
J. Chem. Theory Comput.
15
,
3591
(
2019
).
16.
A. D.
Chien
,
A. A.
Holmes
,
M.
Otten
,
C. J.
Umrigar
,
S.
Sharma
, and
P. M.
Zimmerman
,
J. Phys. Chem. A
122
,
2714
(
2018
).
17.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
14
,
4360
(
2018
).
18.
P.-F.
Loos
,
M.
Boggio-Pasqua
,
A.
Scemama
,
M.
Caffarel
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
15
,
1939
(
2019
).
19.
M.
Dash
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
,
J. Chem. Theory Comput.
14
,
4176
(
2018
).
20.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
(
1992
).
21.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
22.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
23.
E.
Xu
,
M.
Uejima
, and
S. L.
Ten-no
,
Phys. Rev. Lett.
121
,
113001
(
2018
).
24.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
25.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
26.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M. C.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
27.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
134
,
024112
(
2011
).
28.
S.
Ten-no
,
J. Chem. Phys.
138
,
164126
(
2013
).
29.
Y.
Ohtsuka
and
S.
Ten-no
,
J. Chem. Phys.
143
,
214107
(
2015
).
30.
S.
Ten-no
,
J. Chem. Phys.
147
,
244107
(
2017
).
31.
J. S.
Spencer
,
N. S.
Blunt
,
S.
Choi
,
J.
Etrych
,
M.-A.
Filip
,
W. M. C.
Foulkes
,
R. S. T.
Franklin
,
W. J.
Handley
,
F. D.
Malone
, and
V. A.
Neufeld
,
J. Chem. Theory Comput.
15
,
1728
(
2019
).
32.
V. A.
Neufeld
and
J. W.
Thom
,
J. Chem. Theory Comput.
15
,
127
(
2019
).
33.
N. S.
Blunt
,
J. Chem. Phys.
148
,
221101
(
2018
).
34.
S.
Sharma
,
A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
(
2017
).
35.
Y.
Garniron
,
A.
Scemama
,
P.-F.
Loos
, and
M.
Caffarel
,
J. Chem. Phys.
147
,
034101
(
2017
).
36.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2015
).
37.
I.
Lindgren
and
J.
Morrison
,
Atomic Many-Body Theory
, Springer Series in Chemical Physics Vol. 13 (
Springer
,
1982
).
38.
N. C.
Handy
,
P. J.
Knowles
, and
K.
Somasundram
,
Theor. Chim. Acta
68
,
87
(
1985
).
39.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
40.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
142
,
184107
(
2015
).
41.
M. L.
Leininger
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
C. D.
Sherrill
,
J. Chem. Phys.
112
,
9213
(
2000
).
42.
R. J.
Bartlett
,
I.
Shavitt
, and
G. D.
Purvis
,
J. Chem. Phys.
71
,
281
(
1979
).
43.
J.
Hachmann
,
J. J.
Dorando
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
44.
A.
Grüneis
,
S.
Hirata
,
Y.-y.
Ohnishi
, and
S.
Ten-no
,
J. Chem. Phys.
146
,
080901
(
2017
).
45.
P.-F.
Loos
,
B.
Pradines
,
A.
Scemama
,
J.
Toulouse
, and
E.
Ginner
,
J. Phys. Chem. Lett.
10
,
2931
(
2019
).

Supplementary Material

You do not currently have access to this content.