The freezing of ionic aqueous solutions is common in both nature and human-conducted cryopreservation. The cooling rate and the dimensions constraining the solution are known to fundamentally influence the physicochemical characteristics of the sample, including the extent of vitrification, morphology, and distribution of ions. The presence of some salts in an aqueous solution often suppresses the ice crystallization, allowing bulk vitrification during relatively slow cooling. Such a process, however, does not occur in NaCl solutions, previously observed to vitrify only under hyperquenching and/or in sub-micrometric confinements. This work demonstrates that, at freezing rates of ≥100 K min−1, crystallized ice Ih expels the freeze-concentrated solution onto the surfaces of the crystals, forming lamellae and veins to produce glass, besides eutectic crystallization. The vitrification covers (6.8% ± 0.6%) and (17.9% ± 1.5%) of the total eutectic content in 0.06M and 3.4 mM solutions, respectively. The vitrified solution shows a glass-to-liquid transition succeeded by cold crystallization of NaCl · 2H2O during heating via differential scanning calorimetry. We establish that ice crystallization is accompanied by increased basicity in freeze-concentrated solutions, reflecting preferential incorporation of chloride anions over sodium cations into the ice. After the sample is heated above the glass transition temperature, the acidity gradually returns towards the original value. The morphology of the samples is visualized with an environmental scanning electron microscope. Generally, the method of vitrifying the freeze-concentrated solution in between the ice Ih crystals via fast cooling can be considered a facile route towards information on vitrified solutions.

1.
V.
Fuentes-Landete
,
C.
Mitterdorfer
,
P. H.
Handle
,
G. N.
Ruiz
,
J.
Bernard
,
A.
Bogdan
,
M.
Seidl
,
K.
Amann-Winkel
,
J.
Stern
,
F.
Stephan
, and
T.
Loerting
, in
Proceedings of the International School of Physics “Enrico Fermi” Course 187: Water: Fundamentals as the Basis for Understanding the Environment and Promoting Technology
, edited by P. G. Debenedetti, M. A. Ricci, and F. Bruni (
IOS
,
Amsterdam
;
SIF
,
Bologna
,
2015
), pp.
2173
2208
.
2.
P. H.
Handle
,
T.
Loerting
, and
F.
Sciortino
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
51
),
13336
13344
(
2017
).
3.
P. G.
Debenedetti
and
H. E.
Stanley
,
Phys. Today
56
(
6
),
40
46
(
2003
).
4.
A. C. A.
Boogert
,
P. A.
Gerakines
, and
D. C. B.
Whittet
,
Annu. Rev. Astron. Astrophys.
53
(
1
),
541
581
(
2015
).
5.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford
,
1999
).
6.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
,
Chem. Rev.
116
(
13
),
7463
7500
(
2016
).
7.
T.
Bartels-Rausch
,
H. W.
Jacobi
,
T. F.
Kahan
,
J. L.
Thomas
,
E. S.
Thomson
,
J. P. D.
Abbatt
,
M.
Ammann
,
J. R.
Blackford
,
H.
Bluhm
,
C.
Boxe
,
F.
Domine
,
M. M.
Frey
,
I.
Gladich
,
M. I.
Guzmán
,
D.
Heger
,
T.
Huthwelker
,
P.
Klán
,
W. F.
Kuhs
,
M. H.
Kuo
,
S.
Maus
,
S. G.
Moussa
,
V. F.
McNeill
,
J. T.
Newberg
,
J. B. C.
Pettersson
,
M.
Roeselová
, and
J. R.
Sodeau
,
Atmos. Chem. Phys.
14
(
3
),
1587
1633
(
2014
).
8.
T.
Bartels-Rausch
,
Nature
494
(
7435
),
27
29
(
2013
).
9.
B.
Zobrist
,
C.
Marcolli
,
D. A.
Pedernera
, and
T.
Koop
,
Atmos. Chem. Phys.
8
(
17
),
5221
5244
(
2008
).
10.
A.
Virtanen
,
J.
Joutsensaari
,
T.
Koop
,
J.
Kannosto
,
P.
Yli-Pirila
,
J.
Leskinen
,
J. M.
Makela
,
J. K.
Holopainen
,
U.
Poschl
,
M.
Kulmala
,
D. R.
Worsnop
, and
A.
Laaksonen
,
Nature
467
(
7317
),
824
827
(
2010
).
11.
J.
Dubochet
and
A. W.
McDowall
,
J. Microsc.
124
(
3
),
3
4
(
1981
).
12.
M.
Adrian
,
J.
Dubochet
,
J.
Lepault
, and
A. W.
McDowall
,
Nature
308
(
5954
),
32
36
(
1984
).
13.
J.
Dubochet
and
E.
Knapek
,
PLoS Biol.
16
(
4
),
e2005550
(
2018
).
14.
R. S.
Dillard
,
C. M.
Hampton
,
J. D.
Strauss
,
Z.
Ke
,
D.
Altomara
,
R. C.
Guerrero-Ferreira
,
G.
Kiss
, and
E. R.
Wright
,
Microsc. Microanal.
24
(
4
),
406
419
(
2018
).
15.
P.
Bruggeller
and
E.
Mayer
,
Nature
288
(
5791
),
569
571
(
1980
).
16.
E.
Mayer
,
J. Appl. Phys.
58
(
2
),
663
667
(
1985
).
17.
D.
Heger
,
J.
Jirkovsky
, and
P.
Klan
,
J. Phys. Chem. A
109
(
30
),
6702
6709
(
2005
).
18.
J. R.
Blackford
,
J. Phys. D: Appl. Phys.
40
(
21
),
R355
R385
(
2007
).
19.
P. V.
Hobbs
,
Ice Physics
(
Oxford University Press
,
Oxford
,
2010
).
20.
S.
Klotz
,
L. E.
Bove
,
T.
Strässle
,
T. C.
Hansen
, and
A. M.
Saitta
,
Nat. Mater.
8
,
405
(
2009
).
21.
H.
Kanno
and
C. A.
Angell
,
J. Phys. Chem.
81
(
26
),
2639
2643
(
1977
).
22.
G. N.
Ruiz
,
K.
Amann-Winkel
,
L. E.
Bove
,
H. R.
Corti
, and
T.
Loerting
,
Phys. Chem. Chem. Phys.
20
,
6401
6408
(
2018
).
23.
C. A.
Angell
and
E. J.
Sare
,
J. Chem. Phys.
52
(
3
),
1058
1068
(
1970
).
24.
V.
Berejnov
,
N. S.
Husseini
,
O. A.
Alsaied
, and
R. E.
Thorne
,
J. Appl. Crystallogr.
39
(
2
),
244
251
(
2006
).
25.
M.
Warkentin
,
J. P.
Sethna
, and
R. E.
Thorne
,
Phys. Rev. Lett.
110
(
1
),
015703
(
2013
).
26.
A.-A.
Ludl
,
L. E.
Bove
,
J.
Li
,
M.
Morand
, and
S.
Klotz
,
Eur. Phys. J.: Spec. Top.
226
(
5
),
1051
1063
(
2017
).
27.
A.
Hallbrucker
and
E.
Mayer
,
J. Phys. Chem.
92
(
7
),
2007
2012
(
1988
).
28.
B. J.
Murray
and
A. K.
Bertram
,
Phys. Chem. Chem. Phys.
10
(
22
),
3287
(
2008
).
29.
R.
Bergman
and
J.
Swenson
,
Nature
403
,
283
(
2000
).
30.
A. A.
Ludl
,
L. E.
Bove
,
A. M.
Saitta
,
M.
Salanne
,
T. C.
Hansen
,
C. L.
Bull
,
R.
Gaal
, and
S.
Klotz
,
Phys. Chem. Chem. Phys.
17
(
21
),
14054
14063
(
2015
).
31.
B. J.
Murray
,
D. A.
Knopf
, and
A. K.
Bertram
,
Nature
434
,
202
(
2005
).
32.
L.
Zhao
,
L.
Pan
,
Z.
Cao
, and
Q.
Wang
,
Chem. Phys. Lett.
647
,
170
174
(
2016
).
33.
D.
Cullen
and
I.
Baker
,
Microsc. Res. Tech.
55
(
3
),
198
207
(
2001
).
34.
D.
Iliescu
and
I.
Baker
,
J. Glaciol.
54
(
185
),
362
370
(
2017
).
35.
J.
Krausko
,
J.
Runštuk
,
V.
Neděla
,
P.
Klán
, and
D.
Heger
,
Langmuir
30
(
19
),
5441
5447
(
2014
).
36.
Ļ.
Vetráková
,
V.
Neděla
,
J.
Runštuk
, and
D.
Heger
,
Cryosphere Discuss.
2019
,
1
28
.
37.
J.
Krausko
,
J. K. E.
Malongwe
,
G.
Bičanová
,
P.
Klán
,
D.
Nachtigallová
, and
D.
Heger
,
J. Phys. Chem. A
119
(
32
),
8565
8578
(
2015
).
38.
R.
Kania
,
J. K. E.
Malongwe
,
D.
Nachtigallová
,
J.
Krausko
,
I.
Gladich
,
M.
Roeselová
,
D.
Heger
, and
P.
Klán
,
J. Phys. Chem. A
118
(
35
),
7535
7547
(
2014
).
39.
D.
Heger
and
P.
Klan
,
J. Photochem. Photobiol., A
187
(
2-3
),
275
284
(
2007
).
40.
M.
Thangswamy
,
P.
Maheshwari
,
D.
Dutta
,
V.
Rane
, and
P. K.
Pujari
,
J. Phys. Chem. A
122
(
23
),
5177
5189
(
2018
).
41.
A.
Bogdan
and
M. J.
Molina
,
J. Phys. Chem. A
121
(
16
),
3109
3116
(
2017
).
42.
A.
Bogdan
,
M. J.
Molina
,
H.
Tenhu
,
E.
Bertel
,
N.
Bogdan
, and
T.
Loerting
,
Sci. Rep.
4
,
7414
(
2014
).
43.
A.
Bogdan
,
M. J.
Molina
,
H.
Tenhu
,
E.
Mayer
, and
T.
Loerting
,
Nat. Chem.
2
,
197
(
2010
).
44.
J.
Krausko
,
G.
Ondrušková
, and
D.
Heger
,
J. Phys. Chem. A
119
(
43
),
10761
10763
(
2015
).
45.
G.
Ondrušková
,
J.
Krausko
,
J. N.
Stern
,
A.
Hauptmann
,
T.
Loerting
, and
D.
Heger
,
J. Phys. Chem. C
122
(
22
),
11945
11953
(
2018
).
46.
C.
McCarthy
,
J. R.
Blackford
, and
C. E.
Jeffree
,
J. Microsc.
249
(
2
),
150
157
(
2013
).
47.
J. R.
Blackford
,
C. E.
Jeffree
,
D. F. J.
Noake
, and
B. A.
Marmo
,
Proc. Inst. Mech. Eng., Part L
221
(
3
),
151
156
(
2007
).
48.
W.
Rosenthal
,
J.
Saleta
, and
J.
Dozier
,
Cold Reg. Sci. Technol.
47
(
1-2
),
80
89
(
2007
).
49.
D.
Heger
,
J.
Klanova
, and
P.
Klan
,
J. Phys. Chem. B
110
(
3
),
1277
1287
(
2006
).
50.
Ļ.
Vetráková
,
V.
Vykoukal
, and
D.
Heger
,
Int. J. Pharm.
530
(
1-2
),
316
325
(
2017
).
51.
N.
Murase
and
F.
Franks
,
Biophys. Chem.
34
(
3
),
293
300
(
1989
).
52.
P.
Sundaramurthi
,
E.
Shalaev
, and
R.
Suryanarayanan
,
J. Phys. Chem. B
114
(
14
),
4915
4923
(
2010
).
53.
Ļ.
Krausková
,
J.
Procházková
,
M.
Klašková
,
L.
Filipová
,
R.
Chaloupková
,
S.
Malý
,
J.
Damborský
, and
D.
Heger
,
Int. J. Pharm.
509
(
1-2
),
41
49
(
2016
).
54.
E. J.
Workman
and
S. E.
Reynolds
,
Phys. Rev.
78
(
3
),
254
(
1950
).
55.
J. J.
Li
,
K.
Chatterjee
,
A.
Medek
,
E.
Shalaev
, and
G.
Zografi
,
J. Pharm. Sci.
93
(
3
),
697
712
(
2004
).
56.
J.
Ju
,
J.
Kim
,
Ļ.
Vetráková
,
J.
Seo
,
D.
Heger
,
C.
Lee
,
H.-I.
Yoon
,
K.
Kim
, and
J.
Kim
,
J. Hazard. Mater.
329
,
330
338
(
2017
).
57.
Y.
Choi
,
H.-I.
Yoon
,
C.
Lee
,
Ļ.
Vetráková
,
D.
Heger
,
K.
Kim
, and
J.
Kim
,
Environ. Sci. Technol.
52
(
9
),
5378
5385
(
2018
).
58.
L. M.
Shulman
,
Astron. Astrophys.
416
(
1
),
187
190
(
2004
).
59.
Y.
Orii
and
M.
Morita
,
J. Biochem.
81
(
1
),
163
168
(
1977
).
60.
J. T.
Newberg
,
Fluid Phase Equilib.
478
,
82
89
(
2018
).
61.
P. H.
Gleick
,
Water in Crisis. A Guide to the World’s Fresh Water Resources
(
Oxford University Press
,
1993
).
62.
B.
Light
,
R. C.
Carns
, and
S. G.
Warren
,
J. Geophys. Res.: Oceans
121
(
7
),
4966
4979
, https://doi.org/10.1002/2016jc011803 (
2016
).
63.
S. G.
Warren
,
Philos. Trans. R. Soc., A
377
(
2146
),
20180161
(
2019
).
64.
D. A.
Wiesenburg
and
B. J.
Little
,
Ocean Phys. Eng.
12
(
3-4
),
127
165
(
1988
).
65.
E. M.
Knipping
,
M. J.
Lakin
,
K. L.
Foster
,
P.
Jungwirth
,
D. J.
Tobias
,
R. B.
Gerber
,
D.
Dabdub
, and
B. J.
Finlayson-Pitts
,
Science
288
(
5464
),
301
306
(
2000
).
66.
X.
Yang
,
V.
Neděla
,
J.
Runštuk
,
G.
Ondrušková
,
J.
Krausko
,
Ļ.
Vetráková
, and
D.
Heger
,
Atmos. Chem. Phys.
17
(
10
),
6291
6303
(
2017
).
67.
A.
Krepelova
,
T.
Huthwelker
,
H.
Bluhm
, and
M.
Ammann
,
ChemPhysChem
11
(
18
),
3859
3866
(
2010
).
68.
N. A.
Gavrilenko
,
N. V.
Saranchina
,
A. V.
Sukhanov
, and
D. A.
Fedan
,
Mendeleev Commun.
28
(
4
),
450
452
(
2018
).
69.
W.
Yao
and
R. H.
Byrne
,
Environ. Sci. Technol.
35
(
6
),
1197
1201
(
2001
).
70.
J. A.
Dean
,
Lange’s Handbook of Chemistry
, 14th ed. (
McGraw-Hill
,
New York
,
1992
).
71.
D.
Perrin
,
Aust. J. Chem.
16
(
4
),
572
578
(
1963
).
72.
M. M.
Ghoneim
,
Y. M.
Issa
, and
M. A.
Ashy
,
Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem.
18
(
4
),
349
350
(
1979
).
73.
L. P.
Hammett
and
M. A.
Paul
,
J. Am. Chem. Soc.
56
,
827
829
(
1934
).
74.
L. P.
Hammett
and
A. J.
Deyrup
,
J. Am. Chem. Soc.
54
(
7
),
2721
2739
(
1932
).
75.
R.
Govindarajan
,
K.
Chatterjee
,
L.
Gatlin
,
R.
Suryanarayanan
, and
E. Y.
Shalaev
,
J. Pharm. Sci.
95
(
7
),
1498
1510
(
2006
).
76.
D. L.
Williams-Smith
,
R. C.
Bray
,
M. J.
Barber
,
A. D.
Tsopanakis
, and
S. P.
Vincent
,
Biochem. J.
167
(
3
),
593
600
(
1977
).
77.
V.
Nedela
,
Microsc. Res. Tech.
70
(
2
),
95
100
(
2007
).
78.
V.
Nedela
,
E.
Tihlarikova
,
J.
Runstuk
, and
J.
Hudec
,
Ultramicroscopy
184
,
1
11
(
2018
).
79.
V. A.
Drebushchak
,
A. G.
Ogienko
, and
A. S.
Yunoshev
,
Thermochim. Acta
647
,
94
100
(
2017
).
80.
G.
Desbois
,
J. L.
Urai
,
C.
Burkhardt
,
M. R.
Drury
,
M.
Hayles
, and
B.
Humbel
,
Geofluids
8
(
1
),
60
72
(
2008
).
81.
A.
Bogdan
,
M. J.
Molina
,
H.
Tenhu
,
E.
Mayer
,
E.
Bertel
, and
T.
Loerting
,
J. Phys.: Condens. Matter
23
(
3
),
035103
(
2011
).
82.
A.
Hauptmann
,
K.
Podgoršek
,
D.
Kuzman
,
S.
Srčič
,
G.
Hoelzl
, and
T.
Loerting
,
Pharm. Res.
35
(
5
),
101
(
2018
).
83.
B. S.
Chang
and
C. S.
Randall
,
Cryobiology
29
(
5
),
632
656
(
1992
).
84.
E. Y.
Shalaev
,
F.
Franks
, and
P.
Echlin
,
J. Phys. Chem.
100
(
4
),
1144
1152
(
1996
).
85.
D. L.
Anderson
and
W. F.
Weeks
,
Trans., Am. Geophys. Union
39
(
4
),
632
640
(
1958
).
86.
W. F.
Weeks
,
On Sea Ice
(
University of Alaska Press
,
2010
), ISBN: 9781602231016.
87.
D. N.
Thomas
,
Sea Ice
(
Wiley-Blackwell
,
Chichester, UK
,
2017
).
88.
K.
Nagashima
and
Y.
Furukawa
,
J. Phys. Chem. B
101
(
32
),
6174
6176
(
1997
).
89.
P. K.
Rohatgi
and
C. M.
Adams
,
J. Glaciol.
6
(
47
),
663
679
(
1967
).
90.
S.
Maus
, “
Prediction of the cellular microstructure of sea ice by morphological stability theory
,” in
Physics and Chemistry of Ice
, edited by W. Kuhs (
Royal Society of Chemistry
,
2007
), pp.
371
382
, ISBN: 978-1-84755-777-3.
91.
K.
Hofer
,
G.
Astl
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
95
(
26
),
10777
10781
(
1991
).
92.
B.
Zobrist
,
V.
Soonsin
,
B. P.
Luo
,
U. K.
Krieger
,
C.
Marcolli
,
T.
Peter
, and
T.
Koop
,
Phys. Chem. Chem. Phys.
13
(
8
),
3514
3526
(
2011
).
93.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Nature
330
,
552
(
1987
).
94.
T.
Koop
,
A.
Kapilashrami
,
L. T.
Molina
, and
M. J.
Molina
,
J. Geophys. Res.: Atmos.
105
(
D21
),
26393
26402
, https://doi.org/10.1029/2000jd900413 (
2000
).
95.
96.
B.
Han
,
J. H.
Choi
,
J. A.
Dantzig
, and
J. C.
Bischof
,
Cryobiology
52
(
1
),
146
151
(
2006
).
97.
J.
Leys
,
P.
Losada-Pérez
,
C.
Glorieux
, and
J.
Thoen
,
J. Therm. Anal. Calorim.
129
(
3
),
1727
1739
(
2017
).
98.
D. G.
Archer
,
J. Phys. Chem. Ref. Data
21
(
4
),
793
829
(
1992
).
99.
N.
Hubert
,
R.
Solimando
,
A.
Pere
, and
L.
Schuffenecker
,
Thermochim. Acta
294
(
2
),
157
163
(
1997
).
100.
R.
Wagner
,
O.
Möhler
, and
M.
Schnaiter
,
J. Phys. Chem. A
116
(
33
),
8557
8571
(
2012
).
101.
B.
Light
,
R. E.
Brandt
, and
S. G.
Warren
,
J. Geophys. Res.
114
(
C7
),
C07018
, https://doi.org/10.1029/2008jc005211 (
2009
).
102.
L.
Komunjer
,
M.
Ollivon
,
B.
Fouconnier
,
A. T.
Luong
,
I.
Pezron
, and
D.
Clausse
,
J. Therm. Anal. Calorim.
98
(
1
),
125
131
(
2009
).
103.
D.
Clausse
,
I.
Pezron
,
L.
Potier
, and
S.
Raynal
, in
Thermodynamic Modeling and Materials Data Engineering
, edited by
J.-P.
Caliste
,
A.
Truyol
, and
J. H.
Westbrook
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1998
), pp.
115
128
.
104.
M. I.
Sola
and
H. R.
Corti
,
An. Asoc. Quim. Argent.
81
(
6
),
483
498
(
1993
).
105.
P. W.
Wilson
and
A. D. J.
Haymet
,
J. Phys. Chem. B
114
(
39
),
12585
12588
(
2010
).
106.
P. W.
Wilson
and
A. D. J.
Haymet
,
J. Phys. Chem. B
112
(
37
),
11750
11755
(
2008
).
107.
Z.
Roubal
,
Z.
Szabó
,
M.
Steinbauer
,
D.
Heger
, and
R.
Kubásek
, presented at the
Progress in Electromagnetics Research Symposium
,
2011
.
108.
V. L.
Bronshteyn
and
A. A.
Chernov
,
J. Cryst. Growth
112
(
1
),
129
145
(
1991
).
109.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
,
Phys. Chem. Chem. Phys.
19
(
14
),
9566
9574
(
2017
).
110.
I. G.
Young
and
R. E.
Salomon
,
J. Chem. Phys.
48
(
4
),
1635
1644
(
1968
).
111.
T.
Nakamura
and
S. J.
Jones
,
Scr. Metall.
4
(
2
),
123
126
(
1970
).
112.
H. W.
Robinson
, “
The influence of neutral salts on the pH of phosphate buffers mixtures
,”
J. Bio. Chem.
82
,
775
802
(
1929
).
113.
C.
Rottman
,
G.
Grader
,
Y.
De Hazan
,
S.
Melchior
, and
D.
Avnir
, “
Surfactant-induced modification of dopants reactivity in sol-gel matrixes
,”
J. Am. Chem. Soc.
121
(
37
),
8533
8543
(
1999
).

Supplementary Material

You do not currently have access to this content.