Type II clathrate hydrates (CHs) were studied by thermal and dielectric measurements. All CHs amorphize, or collapse, on pressurization to 1.3 GPa below 135 K. After heating to 160 K at 1 GPa, the stability of the amorphous states increases in a process similar to the gradual high density to very high density amorphous ice (HDA to VHDA) transition. On a subsequent pressure decrease, the amorphized CHs expand partly irreversibly similar to the gradual VHDA to expanded HDA ice transformation. After further heating at 1 GPa, weak transition features appear near the HDA to low density amorphous ice transition. The results suggest that CH nucleation sites vanish on heating to 160 K at 1 GPa and that a sluggish partial phase-separation process commences on further heating. The collapsed CHs show two glass transitions (GTs), GT1 and GT2. GT1 is weakly pressure-dependent, 12 K GPa−1, with a relaxation time of 0.3 s at 140 K and 1 GPa; it is associated with a weak heat capacity increase of 3.7 J H2O-mol−1 K−1 in a 18 K range and an activation energy of only 38 kJ mol−1 at 1 GPa. The corresponding temperature of GT2 is 159 K at 0.4 GPa with a pressure dependence of 36 K GPa−1; it shows 5.5 times larger heat capacity increase and 4 times higher activation energy than GT1. GT1 is observed also in HDA and VHDA, whereas GT2 occurs just above the crystallization temperature of expanded HDA and only within its ∼0.2–0.7 GPa stable pressure range.

1.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
310
,
393
(
1984
).
2.
R. J.
Nelmes
,
J. S.
Loveday
,
T.
Strässle
,
C. L.
Bull
,
M.
Guthrie
,
G.
Hamel
, and
S.
Klotz
, “
Annealed high-density amorphous ice under pressure
,”
Nat. Phys.
2
,
414
(
2006
).
3.
O.
Mishima
,
J. Chem. Phys.
100
,
5910
(
1994
).
4.
O.
Mishima
,
Nature
384
,
546
(
1996
).
5.
T.
Loerting
,
C.
Salzmann
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
5355
(
2001
).
6.
J. N.
Stern
and
T.
Loerting
,
Phys. Chem. Chem. Phys.
20
,
12589
(
2018
).
7.
O.
Andersson
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
11013
(
2011
).
8.
O.
Andersson
and
A.
Inaba
,
Phys. Rev. B
74
,
184201
(
2006
).
9.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
314
,
76
(
1985
).
10.
Y. P.
Handa
,
J. S.
Tse
,
D. D.
Klug
, and
E.
Whalley
,
J. Chem. Phys.
94
,
623
(
1991
).
11.
Y.
Suzuki
,
Phys. Rev. B
70
,
172108
(
2004
).
12.
O.
Andersson
and
A.
Inaba
,
J. Phys. Chem. Lett.
3
,
1951
(
2012
).
13.
O.
Andersson
and
Y.
Nakazawa
,
J. Phys. Chem. B
119
,
3846
(
2015
).
14.
O.
Andersson
and
U.
Häussermann
,
J. Phys. Chem. B
122
,
4376
(
2018
).
15.
C. A.
Tulk
,
J. J.
Molaison
,
A. R.
Makhluf
,
C. E.
Manning
, and
D. D.
Klug
,
Nature
569
,
542
(
2019
).
16.
D. W.
Davidson
, in
Water: A Comprehensive Treatise
, edited by
F.
Franks
(
Plenum
,
New York
,
1973
), Vol. 2, Chap. 3, p.
115
.
17.
E. D.
Sloan
,
Clathrate Hydrates of Natural Gas
, 2nd ed. (
Dekker
,
New York
,
1998
).
18.
O.
Yamamuro
and
H.
Suga
,
J. Therm. Anal.
35
,
2025
(
1989
).
19.
J. A.
Ripmeester
,
J. S.
Tse
,
C. I.
Ratcliffe
, and
B. M.
Powell
,
Nature
325
,
135
(
1987
).
20.
F.
Franks
, in
Water: A Matrix of Life
, 2nd ed. (
Royal Society of Chemistry
,
Cambridge
,
2000
).
21.
N.
Kuratomi
,
O.
Yamamuro
,
T.
Matsuo
, and
H.
Suga
,
J. Chem. Thermodyn.
23
,
485
(
1991
).
22.
V. V.
Struzhkin
,
B.
Militzer
,
W. L.
Mao
,
H.-K.
Mao
, and
R. J.
Hemley
,
Chem. Rev.
107
,
4133
(
2007
).
23.
R. G.
Ross
,
P.
Andersson
, and
G.
Bäckström
,
Nature
290
,
322
(
1981
).
24.
R. G.
Ross
and
P.
Andersson
,
Can. J. Chem.
60
,
881
(
1982
).
25.
G. P.
Johari
and
S. J.
Jones
,
Philos. Mag. B
54
,
311
(
1986
).
26.
B.
Håkansson
,
P.
Andersson
, and
G.
Bäckström
,
Rev. Sci. Instrum.
59
,
2269
(
1988
).
27.
O.
Andersson
and
A.
Inaba
,
Phys. Chem. Chem. Phys.
7
,
1441
(
2005
).
28.
O.
Andersson
,
B.
Sundqvist
, and
G.
Bäckström
,
High Pressure Res.
10
,
599
(
1992
).
29.
H.
Forsman
,
J. Phys. D: Appl. Phys.
22
,
S
(
1989
).
30.
T.
Yonekura
,
O.
Yamamuro
,
T.
Matsuo
, and
H.
Suga
,
Thermochim. Acta
266
,
65
(
1995
).
31.
O.
Yamamuro
,
M.
Oguni
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
49
,
425
(
1988
).
32.
B.
Morris
and
D. W.
Davidson
,
Can. J. Chem.
49
,
1243
(
1971
).
33.
G. P.
Johari
and
O.
Andersson
,
Phys. Rev. B
70
,
184108
(
2004
).
34.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
(
2012
).
35.
G. A.
Slack
,
Phys. Rev. B
22
,
3065
(
1980
).
36.
O.
Andersson
and
A.
Inaba
,
J. Chem. Phys.
122
,
124710
(
2005
).
37.
O.
Andersson
and
G. P.
Johari
,
Phys. Rev. B
78
,
174201
(
2008
).
38.
M.
Bauer
,
D. M.
Többens
,
E.
Mayer
, and
T.
Loerting
,
Phys. Chem. Chem. Phys.
13
,
2167
(
2011
).
39.
P. H. B.
Brant Carvalho
,
A.
Mace
,
C. L.
Bull
,
N. P.
Funnell
,
C. A.
Tulk
,
O.
Andersson
, and
U.
Häussermann
,
J. Chem. Phys.
150
,
204506
(
2019
).
40.
A. Yu.
Manakov
,
A. Yu.
Likhacheva
,
V. A.
Potemkin
,
A. G.
Ogienko
,
A. V.
Kurnosov
, and
A. I.
Ancharov
,
ChemPhysChem
12
,
2476
(
2011
).
41.
S. R.
Gough
and
D. W.
Davidson
,
Can. J. Chem.
49
,
2691
(
1971
).
42.
K. C.
Hester
,
Z.
Huo
,
A. L.
Ballard
,
C. A.
Koh
,
K. T.
Miller
, and
E. D.
Sloan
,
J. Phys. Chem. B
111
,
8830
(
2007
).
43.
E. L.
Gromnitskaya
,
O. V.
Stal’gorova
,
V. V.
Brazhkin
, and
A. G.
Lyapin
,
Phys. Rev. B
64
,
094205
(
2001
).
44.
E.
Whalley
,
J. Geophys. Res.
85
,
2539
, https://doi.org/10.1029/jb085ib05p02539 (
1980
).
45.

To approximately calculate the density of the ultimately densified CHs at 1 GPa, we use experimental results39,40 and an estimate that the compressibility of a CH is ∼1.15 times that of ice Ih.44 The density of ice Ih increases ∼10% on pressurization from 1 bar to 1 GPa at 125 K43 by a short extrapolation from the transition pressure of 0.85 GPa, which yields an ∼12% density increase for the CH. The density of CHs at 130 K and 1 bar is approximately 1.00 g cm−3, which is calculated from the cell constant of ∼17.15 Å.41,42 Accounting for the density increase at the collapse (19% at 77 K10) and the subsequent densification on heating, which is observed for both ice Ih5 and CHs,38 the density of the ultimately densified collapsed CHs would be ∼1.4 g cm−3 at 1 GPa with an uncertainty of approximately 5%. (If the density of the collapsed CHs would be 7%–8% higher than collapsed, and ultimately densified, ice Ih, or VHDA, as for the crystalline phases at 1 atm, then the density would be 1.45 g cm−3.)

46.
O.
Andersson
and
G. P.
Johari
,
J. Chem. Phys.
129
,
234505
(
2008
).
47.
O.
Andersson
,
Int. J. Thermophys.
18
,
195
(
1997
).
48.
S. R.
Gough
,
R. E.
Hawkins
,
B.
Morris
, and
D. W.
Davidson
,
J. Phys. Chem.
77
,
2969
(
1973
).
49.
V.
Fuentes-Landete
,
L. J.
Plaga
,
M.
Keppler
,
R.
Böhmer
, and
T.
Loerting
,
Phys. Rev. X
9
,
011015
(
2019
).
50.

The transition coordinates were taken from the temperature and pressure where the change in the thermal conductivity exceeded 5% of the total change during the transition.

51.
O.
Andersson
and
H.
Suga
,
Phys. Rev. B
65
,
140201
(
2001
).
52.
J. S.
Tse
and
M. A.
White
,
J. Phys. Chem.
92
,
5006
(
1988
).
53.
M.
M Koza
,
M. R.
Johnson
,
R.
Viennois
,
H.
Mutka
,
L.
Girard
, and
D.
Ravot
,
Nat. Mater.
7
,
805
(
2008
).
54.
N. J.
English
and
J. S.
Tse
,
Phys. Rev. Lett.
103
,
015901
(
2009
).
55.
P.
Andersson
and
R. G.
Ross
,
J. Phys. C: Solid State Phys.
16
,
1423
(
1983
).
56.
J. S.
Tse
,
D. D.
Klug
,
C. A.
Tulk
,
I.
Swainson
,
E. C.
Svensson
,
C. K.
Loong
,
V.
Shpakov
,
V. R.
Belosludov
,
R. V.
Belosludov
, and
Y.
Kawazoe
,
Nature
400
,
647
(
1999
).
57.
R.
Berman
,
Phys. Rev.
76
,
315
(
1949
).
58.
C. A.
Tulk
,
D. D.
Klug
,
J. J.
Molaison
,
A. M.
dos Santos
, and
N.
Pradhan
,
Phys. Rev. B
86
,
054110
(
2012
).
59.
M. M.
Koza
,
T.
Hansen
,
R. P.
May
, and
H.
Schober
,
J. Non-Cryst. Solids
352
,
4988
(
2006
).
60.
K.
Amann-Winkel
,
C.
Gainaru
,
P. H.
Handle
,
M.
Seidl
,
H.
Nelson
,
R.
Böhmer
, and
T.
Loerting
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17720
(
2013
).
61.
D. W.
Van Krevelen
in
Properties of Polymers
(
Elsevier
,
Amsterdam
,
1972
), p.
233
.
62.
D. G.
Cahill
and
R. O.
Pohl
,
Phys. Rev. B
35
,
4067
(
1987
).
63.
A. A.
Minakov
,
S. A.
Adamovsky
, and
C.
Schick
,
Thermochim. Acta
403
,
89
(
2003
).
64.
N. O.
Birge
,
Phys. Rev. B
34
,
1631
(
1986
).
65.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Nature
330
,
552
(
1987
).
66.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
4986
(
1989
).
67.
O.
Andersson
and
G. P.
Johari
,
J. Chem. Phys.
145
,
204506
(
2016
).
68.
G. P.
Johari
and
O.
Andersson
,
J. Chem. Phys.
146
,
234505
(
2017
).
69.
T.
Loerting
,
W.
Schustereder
,
K.
Winkel
,
C. G.
Salzmann
,
I.
Kohl
, and
E.
Mayer
,
Phys. Rev. Lett.
96
,
025702
(
2006
).
70.
J. L.
Finney
,
D. T.
Bowron
,
A. K.
Soper
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Rev. Lett.
89
,
205503
(
2002
).
71.
M.
Fisher
and
J. P.
Devlin
,
J. Phys. Chem.
99
,
11584
(
1995
).
72.
S.
Capaccioli
and
K. L.
Ngai
,
J. Chem. Phys.
135
,
104504
(
2011
).
You do not currently have access to this content.