Thanks to a constant energy input, active matter can self-assemble into phases with complex architectures and functionalities such as living clusters that dynamically form, reshape, and break-up, which are forbidden in equilibrium materials by the entropy maximization (or free energy minimization) principle. The challenge to control this active self-assembly has evoked widespread efforts typically hinging on engineering of the properties of individual motile constituents. Here, we provide a different route, where activity occurs as an emergent phenomenon only when individual building blocks bind together in a way that we control by laser light. Using experiments and simulations of two species of immotile microspheres, we exemplify this route by creating active molecules featuring a complex array of behaviors, becoming migrators, spinners, and rotators. The possibility to control the dynamics of active self-assembly via light-controllable nonreciprocal interactions will inspire new approaches to understand living matter and to design active materials.

1.
V. N.
Manoharan
,
M. T.
Elsesser
, and
D. J.
Pine
, “
Dense packing and symmetry in small clusters of microspheres
,”
Science
301
,
483
487
(
2003
).
2.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
3.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
, “
Colloids with valence and specific directional bonding
,”
Nature
491
,
51
55
(
2012
).
4.
T. A.
Nguyen
,
A.
Newton
,
D. J.
Kraft
,
P. G.
Bolhuis
, and
P.
Schall
, “
Tuning patchy bonds induced by critical Casimir forces
,”
Materials
10
,
1265
(
2017
).
5.
R.
Niu
,
T.
Palberg
, and
T.
Speck
, “
Self-assembly of colloidal molecules due to self-generated flow
,”
Phys. Rev. Lett.
119
,
028001
(
2017
).
6.
R.
Niu
,
D.
Botin
,
J.
Weber
,
A.
Reinmüller
, and
T.
Palberg
, “
Assembly and speed in ion-exchange-based modular phoretic microswimmers
,”
Langmuir
33
,
3450
3457
(
2017
).
7.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
8.
A. M.
Menzel
, “
Tuned, driven, and active soft matter
,”
Phys. Rep.
554
,
1
45
(
2015
).
9.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
10.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
11.
F.
Peruani
,
A.
Deutsch
, and
M.
Bär
, “
Nonequilibrium clustering of self-propelled rods
,”
Phys. Rev. E
74
,
030904
(
2006
).
12.
D. B.
Dusenbery
,
Living at Micro Scale: The Unexpected Physics of Being Small
(
Harvard University Press
,
2009
).
13.
R.
Trask
,
H.
Williams
, and
I.
Bond
, “
Self-healing polymer composites: Mimicking nature to enhance performance
,”
Bioinspiration Biomimetics
2
,
P1
(
2007
).
14.
H. P.
Narra
and
H.
Ochman
, “
Of what use is sex to bacteria?
,”
Curr. Biol.
16
,
R705
R710
(
2006
).
15.
A.
Ivlev
,
J.
Bartnick
,
M.
Heinen
,
C.-R.
Du
,
V.
Nosenko
, and
H.
Löwen
, “
Statistical mechanics where Newton’s third law is broken
,”
Phys. Rev. X
5
,
011035
(
2015
).
16.
R.
Soto
and
R.
Golestanian
, “
Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry
,”
Phys. Rev. Lett.
112
,
068301
(
2014
).
17.
R.
Soto
and
R.
Golestanian
, “
Self-assembly of active colloidal molecules with dynamic function
,”
Phys. Rev. E
91
,
052304
(
2015
).
18.
M.
Popescu
,
M.
Tasinkevych
, and
S.
Dietrich
, “
Pulling and pushing a cargo with a catalytically active carrier
,”
Europhys. Lett.
95
,
28004
(
2011
).
19.
L.
Baraban
,
M.
Tasinkevych
,
M. N.
Popescu
,
S.
Sanchez
,
S.
Dietrich
, and
O.
Schmidt
, “
Transport of cargo by catalytic Janus micro-motors
,”
Soft Matter
8
,
48
52
(
2012
).
20.
J.
Zhang
,
J.
Yan
, and
S.
Granick
, “
Directed self-assembly pathways of active colloidal clusters
,”
Angew. Chem., Int. Ed.
55
,
5166
(
2016
).
21.
D. P.
Singh
,
U.
Choudhury
,
P.
Fischer
, and
A. G.
Mark
, “
Non-equilibrium assembly of light-activated colloidal mixtures
,”
Adv. Mater.
29
,
1701328
(
2017
).
22.
S.
Ilday
,
G.
Makey
,
G. B.
Akguc
,
Ö.
Yavuz
,
O.
Tokel
,
I.
Pavlov
,
O.
Gülseren
, and
F. Ö.
Ilday
, “
Rich complex behaviour of self-assembled nanoparticles far from equilibrium
,”
Nat. Commun.
8
,
14942
(
2017
).
23.
H.
Löwen
, “
Active colloidal molecules
,”
Europhys. Lett.
121
,
58001
(
2018
).
24.
F.
Ma
,
S.
Wang
,
D. T.
Wu
, and
N.
Wu
, “
Electric-field–induced assembly and propulsion of chiral colloidal clusters
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6307
(
2015
).
25.
F.
Ma
,
X.
Yang
,
H.
Zhao
, and
N.
Wu
, “
Inducing propulsion of colloidal dimers by breaking the symmetry in electrohydrodynamic flow
,”
Phys. Rev. Lett.
115
,
208302
(
2015
).
26.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
, “
Living crystals of light-activated colloidal surfers
,”
Science
339
,
936
(
2013
).
27.
B.
Liebchen
and
H.
Löwen
, “
Which interactions dominate in active colloids?
,” preprint arxiv:1808.07389 (
2018
).
28.
T.
Yu
,
P.
Chuphal
,
S.
Thakur
,
S. Y.
Reigh
,
D. P.
Singh
, and
P.
Fischer
, “
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking
,”
Chem. Commun.
54
,
11933
(
2018
).
29.
C.
Hertlein
,
L.
Helden
,
A.
Gambassi
,
S.
Dietrich
, and
C.
Bechinger
, “
Direct measurement of critical Casimir forces
,”
Nature
451
,
172
(
2008
).
30.
S.
Paladugu
,
A.
Callegari
,
Y.
Tuna
,
L.
Barth
,
S.
Dietrich
,
A.
Gambassi
, and
G.
Volpe
, “
Nonadditivity of critical Casimir forces
,”
Nat. Commun.
7
,
11403
(
2016
).
31.
V.
Nguyen
,
M.
Dang
,
T.
Nguyen
, and
P.
Schall
, “
Critical Casimir forces for colloidal assembly
,”
J. Phys.: Condens. Matter
28
,
043001
(
2016
).
32.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
99
(
1989
).
33.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Propulsion of a molecular machine by asymmetric distribution of reaction products
,”
Phys. Rev. Lett.
94
,
220801
(
2005
).
34.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
, “
Microswimmers in patterned environments
,”
Soft Matter
7
,
8810
(
2011
).
35.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
, “
Active Brownian motion tunable by light
,”
J. Phys.: Condens. Matter
24
,
284129
(
2012
).
36.
F.
Kümmel
,
B.
ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
, “
Circular motion of asymmetric self-propelling particles
,”
Phys. Rev. Lett.
110
,
198302
(
2013
).
37.
A.
Würger
, “
Self-diffusiophoresis of Janus particles in near-critical mixtures
,”
Phys. Rev. Lett.
115
,
188304
(
2015
).
38.
S.
Samin
and
R.
Van Roij
, “
Self-propulsion mechanism of active Janus particles in near-critical binary mixtures
,”
Phys. Rev. Lett.
115
,
188305
(
2015
).
39.
I.
Theurkauff
,
C.
Cottin-Bizonne
,
J.
Palacci
,
C.
Ybert
, and
L.
Bocquet
, “
Dynamic clustering in active colloidal suspensions with chemical signaling
,”
Phys. Rev. Lett.
108
,
268303
(
2012
).
40.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
41.
P. H.
Colberg
and
R.
Kapral
, “
Nanoconfined catalytic Angström-size motors
,”
J. Chem. Phys.
143
,
184906
(
2015
).
42.
S. H.
Klapp
, “
Collective dynamics of dipolar and multipolar colloids: From passive to active systems
,”
Curr. Opin. Colloid Interface Sci.
21
,
76
85
(
2016
).
43.
S.
Ebbens
, “
Active colloids: Progress and challenges towards realising autonomous applications
,”
Curr. Opin. Colloid Interface Sci.
21
,
14
23
(
2016
).
44.
M. C.
Marchetti
,
Y.
Fily
,
S.
Henkes
,
A.
Patch
, and
D.
Yllanes
, “
Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter
,”
Curr. Opin. Colloid Interface Sci.
21
,
34
43
(
2016
).
45.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Springer Science & Business Media
,
2012
), Vol. 1.
46.
S.
Saha
,
R.
Golestanian
, and
S.
Ramaswamy
, “
Clusters, asters, and collective oscillations in chemotactic colloids
,”
Phys. Rev. E
89
,
062316
(
2014
).
47.
O.
Pohl
and
H.
Stark
, “
Dynamic clustering and chemotactic collapse of self-phoretic active particles
,”
Phys. Rev. Lett.
112
,
238303
(
2014
).
48.
B.
Liebchen
,
D.
Marenduzzo
,
I.
Pagonabarraga
, and
M.
Cates
, “
Clustering and pattern formation in chemorepulsive active colloids
,”
Phys. Rev. Lett.
115
(
2015
).
49.
B.
Liebchen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids
,”
Phys. Rev. Lett.
118
,
268001
(
2017
).
50.
S. C.
Takatori
and
J. F.
Brady
, “
Forces, stresses and the (thermo?) dynamics of active matter
,”
Curr. Opin. Colloid Interface Sci.
21
,
24
33
(
2016
).
51.
C. A.
Grattoni
,
R. A.
Dawe
,
C. Y.
Seah
, and
J. D.
Gray
, “
Lower critical solution coexistence curve and physical properties (density, viscosity, surface tension, and interfacial tension) of 2,6-lutidine + water
,”
J. Chem. Eng. Data
38
,
516
(
1993
).
52.
F.
Schmidt
,
A.
Magazzù
,
A.
Callegari
,
L.
Biancofiore
,
F.
Cichos
, and
G.
Volpe
, “
Microscopic engine powered by critical demixing
,”
Phys. Rev. Lett.
120
,
068004
(
2018
).
53.
G.
Volpe
,
S.
Gigan
, and
G.
Volpe
, “
Simulation of the active Brownian motion of a microswimmer
,”
Am. J. Phys.
82
,
659
664
(
2014
).

Supplementary Material

You do not currently have access to this content.