Although molten carbonates only represent, at most, a very minor phase in the Earth’s mantle, they are thought to be implied in anomalous high-conductivity zones in its upper part (70–350 km). Besides, the high electrical conductivity of these molten salts is also exploitable in fuel cells. Here, we report quantitative calculations of their properties, over a large range of thermodynamic conditions and chemical compositions, which are a requisite to develop technological devices and to provide a better understanding of a number of geochemical processes. To model molten carbonates by atomistic simulations, we have developed an optimized classical force field based on experimental data of the literature and on the liquid structure issued from ab initio molecular dynamics simulations performed by ourselves. In implementing this force field into a molecular dynamics simulation code, we have evaluated the thermodynamics (equation of state and surface tension), the microscopic liquid structure and the transport properties (diffusion coefficients, electrical conductivity, and viscosity) of molten alkali carbonates (Li2CO3, Na2CO3, K2CO3, and some of their binary and ternary mixtures) from the melting point up to the thermodynamic conditions prevailing in the Earth’s upper mantle (∼1100–2100 K, 0–15 GPa). Our results are in very good agreement with the data available in the literature. To our knowledge, a reliable molecular model for molten alkali carbonates covering such a large domain of thermodynamic conditions, chemical compositions, and physicochemical properties has never been published yet.

1.
D.
Chery
,
V.
Lair
, and
M.
Cassir
,
Electrochim. Acta
160
,
74
(
2015
).
2.
D.
Chery
,
V.
Lair
, and
M.
Cassir
,
Front. Energy Res.
3
,
43
(
2015
).
3.
M.
Cassir
,
S.
McPhail
, and
A.
Moreno
,
Int. J. Hydrogen Energy
37
,
19345
(
2012
).
4.
M.
Cassir
,
A.
Ringued
, and
V.
Lair
, in
Molten Salts Chemistry
, edited by
F.
Lantelme
and
H.
Groult
(
Elsevier
,
Oxford
,
2013
).
5.
V.
Lair
,
V.
Albin
,
A.
Ringuedé
, and
M.
Cassir
,
Int. J. Hydrogen Energy
37
,
19357
(
2012
).
6.
F.
Gaillard
,
M.
Malki
,
G.
Iacono-Marziano
,
M.
Pichavant
, and
B.
Scaillet
,
Science
322
,
1363
(
2008
).
7.
R.
Dasgupta
and
M. M.
Hirschmann
,
Earth Planet. Sci. Lett.
298
,
1
(
2010
).
8.
R.
Dasgupta
,
Rev. Mineral. Geochem.
75
,
183
(
2013
).
9.
T.
Hammouda
and
S.
Keshav
,
Chem. Geol.
418
,
171
(
2015
).
10.
G. J.
Janz
,
J. Phys. Chem. Ref. Data
17
(
Suppl. 2
),
1
(
1988
), https://srd.nist.gov/JPCRD/jpcrdS2Vol17.pdf.
11.
D.
Sifré
,
L.
Hashim
, and
F.
Gaillard
,
Chem. Geol.
418
,
189
(
2015
).
12.
Y.
Kono
,
C.
Kenney-Benson
,
D.
Hummer
,
H.
Ohfuji
,
C.
Park
,
G.
Shen
,
Y.
Wang
,
A.
Kavner
, and
C. E.
Manning
,
Nat. Commun.
5
,
5091
(
2014
).
13.
G.
Janssen
and
J.
Tissen
,
Mol. Simul.
5
,
83
(
1990
).
14.
J.
Tissen
and
G.
Janssen
,
Mol. Phys.
71
,
413
(
1990
).
15.
J.
Tissen
and
G.
Janssen
,
Mol. Phys.
82
,
101
(
1994
).
17.
T.
Koishi
,
S.
Kawase
,
S.
Tamaki
, and
T.
Ebisuzaki
,
J. Phys. Soc. Jpn.
69
,
3291
(
2000
).
19.
A.
Ottochian
,
C.
Ricca
,
F.
Labat
, and
C.
Adamo
,
J. Mol. Model.
22
,
61
(
2016
).
20.
M. C.
Wilding
,
M.
Wilson
,
O. L. G.
Alderman
,
C.
Benmore
,
J. K. R.
Weber
,
J. B.
Parise
,
A.
Tamalonis
, and
L.
Skinner
,
Sci. Rep.
6
,
24415
(
2016
).
21.
R.
Vuilleumier
,
A.
Seitsonen
,
N.
Sator
, and
B.
Guillot
,
Geochim. Cosmochim. Acta
141
,
547
(
2014
).
22.
D.
Corradini
,
F.-X.
Coudert
, and
R.
Vuilleumier
,
J. Chem. Phys.
144
,
104507
(
2016
).
23.
E.
Desmaele
, “
Physicochemical properties of molten carbonates from atomistic simulations
,” Ph.D. thesis,
Sorbonne Université
,
2017
.
24.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
25.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
26.
J.
Vande Vondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
27.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
28.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
29.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
30.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
31.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
32.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
34.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
35.
A. K.
van Groos
,
Am. Mineral.
75
,
667
(
1990
), http://www.minsocam.org/ammin/am75/am75_667.pdf.
36.
W.
Klement
and
L. H.
Cohen
,
Ber. Bunsengesellschaft Phys. Chem.
79
,
327
(
1975
).
37.
Q.
Liu
and
R.
Lange
,
Contrib. Mineral. Petrol.
146
,
370
(
2003
).
38.
W.
Smith
and
T.
Forester
,
J. Mol. Graphics
14
,
136
(
1996
).
39.
S. M.
Antao
and
I.
Hassan
,
Can. Mineral.
48
,
69
(
2010
).
40.
Y.
Idemoto
,
J. W.
Richardson
,
N.
Koura
,
S.
Kohara
, and
C.-K.
Loong
,
J. Phys. Chem. Solids
59
,
363
(
1998
).
41.
A.
Arakcheeva
,
L.
Bindi
,
P.
Pattison
,
N.
Meisser
,
G.
Chapuis
, and
I.
Pekov
,
Am. Mineral.
95
,
574
(
2010
).
42.
B. M.
Gatehouse
and
D. J.
Lloyd
,
J. Chem. Soc., Dalton Trans.
0
,
70
(
1973
).
43.
G. J.
Janz
and
M. R.
Lorenz
,
J. Electrochem. Soc.
108
,
1052
(
1961
).
44.
P. L.
Spedding
,
J. Electrochem. Soc.
117
,
177
(
1970
).
45.
Z.
Hong-Min
,
T.
Saito
,
Y.
Sato
,
T.
Yamamura
,
K.
Shimakage
, and
T.
Ejima
,
J. Japan Inst. Metals
55
,
937
(
1991
).
46.
T.
Kojima
, “
Physical and chemical properties of molten carbonates
,” Ph.D. thesis,
Kobe University
,
2009
.
47.
T.
Kojima
,
Y.
Miyazaki
,
K.
Nomura
, and
K.
Tanimoto
,
J. Electrochem. Soc.
150
,
E535
(
2003
).
48.
T.
Kojima
,
Y.
Miyazaki
,
K.
Nomura
, and
K.
Tanimoto
,
J. Electrochem. Soc.
155
,
F150
(
2008
).
49.
D. P.
Dobson
,
A. P.
Jones
,
R.
Rabe
,
T.
Sekine
,
K.
Kurita
,
T.
Taniguchi
,
T.
Kondo
,
T.
Kato
,
O.
Shimomura
, and
S.
Urakawa
,
Earth Planet. Sci. Lett.
143
,
207
(
1996
).
50.
Q.
Liu
,
T. J.
Tenner
, and
R. A.
Lange
,
Contrib. Mineral. Petrol.
153
,
55
(
2007
).
52.
S. M.
Rigden
,
T. J.
Ahrens
, and
E. M.
Stolper
,
J. Geophys. Res.
94
,
9508
, https://doi.org/10.1029/jb094ib07p09508 (
1989
).
53.
B.
Guillot
and
N.
Sator
,
Geochim. Cosmochim. Acta
71
,
4538
(
2007
).
54.
M. C.
O’Leary
,
R. A.
Lange
, and
Y.
Ai
,
Contrib. Mineral. Petrol.
170
,
3
(
2015
).
55.
M.
Wang
,
Q.
Liu
,
T.
Inoue
,
B.
Li
,
S.
Pottish
,
J.
Wood
,
C.
Yang
, and
R.
Tao
,
J. Mineral. Petrol. Sci.
111
,
241
(
2016
).
56.
Z.
Li
, “
Melting and structural transformations of carbonates and hydrous phases in Earth’s mantle
,” Ph.D. thesis,
University of Michigan
,
2015
.
57.
H. C.
Maru
,
Molten Salt Techniques
(
Springer US
,
Boston, MA
,
1984
), Vol. 2.
58.
J.
Zarzycki
,
Discuss. Faraday Soc.
32
,
38
(
1961
).
59.
S.
Kohara
,
Y. S.
Badyal
,
N.
Koura
,
Y.
Idemoto
,
S.
Takahashi
,
L. A.
Curtiss
, and
M.-L.
Saboungi
,
J. Phys.: Condens. Matter
10
,
3301
(
1998
).
60.
J.
Hudspeth
,
C.
Sanloup
, and
Y.
Kono
,
Geochem. Perspect. Lett.
7
,
17
(
2018
).
61.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
,
J. Chem. Phys.
102
,
4574
(
1995
).
62.
A.
Aguado
and
P. A.
Madden
,
J. Chem. Phys.
117
,
7659
(
2002
).
63.
M.
Salanne
,
C.
Simon
,
P.
Turq
, and
P. A.
Madden
,
C. R. Chim.
10
,
1131
(
2007
).
64.
J. G.
Kirkwood
and
F. P.
Buff
,
J. Chem. Phys.
17
,
338
(
1949
).
65.
M.
Gonzàlez-Melchor
,
P.
Orea
,
J.
López-Lemus
,
F.
Bresme
, and
J.
Alejandre
,
J. Chem. Phys.
122
,
094503
(
2005
).
66.
A.
Marchand
,
J. H.
Weijs
,
J. H.
Snoeijer
, and
B.
Andreotti
,
Am. J. Phys.
79
,
999
(
2011
).
67.
A. S.
Pensado
,
P.
Malfreyt
, and
A. A. H.
Pdua
,
J. Phys. Chem. B
113
,
14708
(
2009
).
68.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
New York, NY, USA
,
1989
).
69.
B.
Hess
,
J. Chem. Phys.
116
,
209
(
2002
).
70.
E. M.
Adams
,
I. R.
McDonald
, and
K.
Singer
,
Proc. R. Soc. A
357
,
37
(
1977
).
71.
P. L.
Spedding
and
R.
Mills
,
J. Electrochem. Soc.
112
,
594
(
1965
).
72.
P. L.
Spedding
and
R.
Mills
,
J. Electrochem. Soc.
113
,
599
(
1966
).
73.
R.
Mills
and
P. L.
Spedding
,
J. Chem. Phys.
70
,
4077
(
1966
).
74.
C.
Yang
,
R.
Takagi
,
K.
Kawamura
, and
I.
Okada
,
Electrochim. Acta
32
,
1607
(
1987
).
75.
T.
Kojima
,
Y.
Miyazaki
,
K.
Nomura
, and
K.
Tanimoto
,
J. Electrochem. Soc.
154
,
F222
(
2007
).
76.
H. K.
Kashyap
,
H. V.
Annapureddy
,
F. O.
Raineri
, and
C. J.
Margulis
,
J. Chem. Phys. B
115
,
13212
(
2011
).
77.
78.
Y.
Sato
,
T.
Yamazaki
,
H.
Kato
,
H.
Zhu
,
M.
Hoshi
, and
T.
Yamamura
,
Netsu Bussei
13
,
162
(
1999
).
79.
S. W.
Kim
,
K.
Uematsu
,
K.
Toda
, and
M.
Sato
,
J. Ceram. Soc. Jpn.
123
,
355
(
2015
).
80.
D.
Di Genova
,
C.
Cimarelli
,
K.-U.
Hess
, and
D. B.
Dingwell
,
Am. Mineral.
101
,
953
(
2016
).
81.
T.
Ejima
,
J. Chem. Eng. Data
32
,
180
(
1987
).
82.
X.
An
,
J.
Cheng
,
P.
Zhang
,
Z.
Tang
, and
J.
Wang
,
Faraday Discuss.
190
,
327
(
2016
).
83.
V.
Stagno
,
V.
Stopponi
,
Y.
Kono
,
C. E.
Manning
, and
T.
Irifune
,
Chem. Geol.
501
,
19
(
2018
).
84.
K.
Igarashi
,
K.
Tajiri
,
T.
Asashina
, and
M.
Kosaka
,
Z. Naturforsch. A
47
,
675
(
1992
).
85.
A.
Ward
and
G.
Janz
,
Electrochim. Acta
10
,
849
(
1965
).

Supplementary Material

You do not currently have access to this content.