We probed the anatase (101) surface irradiated by near-infrared and infrared photons in different ambient gases by monitoring the surface lattice phonon mode using sum-frequency spectroscopy. We found that even under the irradiation of such low energy photons, the stability of surface oxygen vacancies, in comparison to sub-surface oxygen vacancies, can increase sensibly. The variation of this surface phonon mode is also in accordance with the photo-induced hydrophilicity of titanium oxide surfaces, which may provide the microscopic insight into this phenomenon.

1.
M. Z.
Jacobson
and
M. A.
Delucchi
,
Energy Policy
39
(
3
),
1154
(
2011
).
2.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
3.
T.
Kawai
and
T.
Sakata
,
Nature
286
,
474
(
1980
).
4.
L.
Kavan
,
M.
Grätzel
,
S. E.
Gilbert
,
C.
Klemenz
, and
H. J.
Scheel
,
J. Am. Chem. Soc.
118
(
28
),
6716
(
1996
).
5.
Q.
Guo
,
C.
Xu
,
Z.
Ren
,
W.
Yang
,
Z.
Ma
,
D.
Dai
,
H.
Fan
,
T. K.
Minton
, and
X.
Yang
,
J. Am. Chem. Soc.
134
(
32
),
13366
(
2012
).
6.
C.
Xu
,
W.
Yang
,
Q.
Guo
,
D.
Dai
,
M.
Chen
, and
X.
Yang
,
J. Am. Chem. Soc.
136
(
2
),
602
(
2014
).
7.
K.
Hashimoto
,
H.
Irie
, and
A.
Fujishima
,
Jpn. J. Appl. Phys.
44
(
12
),
8269
(
2005
).
8.
R.
Wang
,
K.
Hashimoto
,
A.
Fujishima
,
M.
Chikuni
,
E.
Kojima
,
A.
Kitamura
,
M.
Shimohigoshi
, and
T.
Watanabe
,
Nature
388
,
431
(
1997
).
9.
T.
Zubkov
,
D.
Stahl
,
T. L.
Thompson
,
D.
Panayotov
,
O.
Diwald
, and
J. T.
Yates
,
J. Phys. Chem. B
109
(
32
),
15454
(
2005
).
10.
Q. F.
Xu
,
Y.
Liu
,
F.
Lin
,
B.
Mondal
, and
A. M.
Lyons
,
ACS Appl. Mater. Interfaces
5
(
18
),
8915
(
2013
).
11.
H.
Kang
,
Y.
Liu
,
H.
Lai
,
X.
Yu
,
Z.
Cheng
, and
L.
Jiang
,
ACS Nano
12
(
2
),
1074
(
2018
).
12.
R.
Wang
,
K.
Hashimoto
,
A.
Fujishima
,
M.
Chikuni
,
E.
Kojima
,
A.
Kitamura
,
M.
Shimohigoshi
, and
T.
Watanabe
,
Adv. Mater.
10
(
2
),
135
(
1999
).
13.
S.
Banerjee
,
D. D.
Dionysiou
, and
S. C.
Pillai
,
Appl. Catal. B: Environ.
176
,
396
(
2015
).
14.
C.
Wang
,
H.
Groenzin
, and
M. J.
Shultz
,
J. Phys. Chem. B
108
(
1
),
265
(
2004
).
15.
C.
Wang
,
H.
Groenzin
, and
M. J.
Shultz
,
J. Am. Chem. Soc.
126
(
26
),
8094
(
2004
).
16.
A.
Liu
,
S.
Liu
,
R.
Zhang
, and
Z.
Ren
,
J. Phys. Chem. C
119
(
41
),
23486
(
2015
).
17.
S.
Liu
,
A.
Liu
,
B.
Wen
,
R.
Zhang
,
C.
Zhou
,
L.
Liu
, and
Z.
Ren
,
J. Phys. Chem. Lett.
6
(
16
),
3327
(
2015
).
18.
J. H.
Jang
,
F.
Lydiatt
,
R.
Lindsay
, and
S.
Baldelli
,
J. Phys. Chem. A
117
(
29
),
6288
(
2013
).
19.
S.
Kataoka
,
M. C.
Gurau
,
F.
Albertorio
,
M. A.
Holden
,
S. M.
Lim
,
R. D.
Yang
, and
P. S.
Cremer
,
Langmuir
20
(
5
),
1662
(
2004
).
20.
Y.
Cao
,
S.
Chen
,
Y.
Li
,
Y.
Gao
,
D.
Yang
,
Y. R.
Shen
, and
W. T.
Liu
,
Sci. Adv.
2
(
9
),
e1601162
(
2016
).
21.
Y.
Li
and
Y.
Gao
,
Phys. Rev. Lett.
112
(
20
),
206101
(
2014
).
22.
Y. R.
Shen
,
J. Opt. Soc. Am. B
28
(
12
),
A56
(
2011
).
23.
S.
Mezhenny
,
P.
Maksymovych
,
T. L.
Thompson
,
O.
Diwald
,
D.
Stahl
,
S. D.
Walck
, and
J. T.
Yates
,
Chem. Phys. Lett.
369
(
1-2
),
152
(
2003
).
24.
P.
Scheiber
,
M.
Fidler
,
O.
Dulub
,
M.
Schmid
,
U.
Diebold
,
W.
Hou
,
U.
Aschauer
, and
A.
Selloni
,
Phys. Rev. Lett.
109
(
13
),
136103
(
2012
).
25.
D. O.
Scanlon
,
C. W.
Dunnill
,
J.
Buckeridge
,
S. A.
Shevlin
,
A. J.
Logsdail
,
S. M.
Woodley
,
C. R. A.
Catlow
,
M. J.
Powell
,
R. G.
Palgrave
,
I. P.
Parkin
,
G. W.
Watson
,
T. W.
Keal
,
P.
Sherwood
,
A.
Walsh
, and
A. A.
Sokol
,
Nat. Mater.
12
,
798
(
2013
).
You do not currently have access to this content.