To investigate crystallinities based on trans-structures, we determined the differences in the crystallization properties of ring and linear polymers by performing united-atom-model molecular dynamics (MD) simulations of homogeneous polyethylene melts of equal length, N, which refers to the number of monomers per chain. Modified parameters based on the DREIDING force field for the CH2 units were used in order to accelerate the crystallization process. To detect polymer crystallization, we introduced some local-order parameters that relate to trans-segments in addition to common crystallinities using neighboring bond orders. Through quenching MD simulations at 5 K/ns, we roughly determined temperature thresholds, Tth, at which crystallization is observed although it was hard to determine the precise Tth as observed in the laboratory time frame with the present computing resources. When N was relatively small (100 and 200), Tth was determined to be 320 and 350 K for the linear- and ring-polyethylene melts, respectively, while Tth was found to be 330 and 350 K, respectively, when N was 1000. Having confirmed that the crystallization of a ring-polyethylene melt occurs faster than that of the analogous linear melt, we conclude that the trans-segment-based crystallinities are effective for the analysis of local crystal behavior.

1.
Y.
Tezuka
,
Topological Polymer Chemistry: Progress of Cyclic Polymers in Syntheses, Properties and Functions
(
WSPC
,
2012
).
2.
M.
Davide
,
Topological Interactions in Ring Polymers
(
Springer
,
2013
).
3.
Z. G.
Wang
, “
50th Anniversary perspective: Polymer conformation—A pedagogical review
,”
Macromolecules
50
,
9073
9114
(
2017
).
4.
C. J. C.
Edwards
and
R. F. T.
Stepto
, in
Cyclic Polymers
, edited by
J. A.
Semlyen
(
Elsevier
,
1986
).
5.
J.
Roovers
and
P. M.
Toporowski
, “
Synthesis of high molecular weight ring polystyrenes
,”
Macromolecules
16
,
843
849
(
1983
).
6.
J.
Roovers
, “
The melt properties of ring polystyrenes
,”
Macromolecules
18
,
1359
1361
(
1985
).
7.
D. J.
Klein
, “
Dynamics of entangled linear, branched, and cyclic polymer
,”
Macromolecules
19
,
105
118
(
1986
).
8.
G. B.
McKenna
,
G.
Hadziioannou
,
P.
Lutz
,
G.
Hild
,
C.
Strazielle
,
C.
Straupe
,
P.
Rempp
, and
A. J.
Kovacs
, “
Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt
,”
Macromolecules
20
,
498
512
(
1987
).
9.
T. C. B.
McLeigh
, “
Polymer dynamics: Floored by the rings
,”
Nat. Mater.
7
,
933
935
(
2008
).
10.
R.
Pasquino
,
T. C.
Vasilakopoulos
,
Y. C.
Jeong
,
H.
Lee
,
S.
Rogers
,
S.
George
,
J.
Allgaier
,
A.
Takano
,
A. R.
Brás
,
T.
Chang
,
S.
Gooßen
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
N.
Hadjichristidis
,
D.
Richter
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Viscosity of ring polymer melts
,”
ACS Macro Lett.
2
,
874
878
(
2013
).
11.
T.
Kitahara
,
S.
Yamazaki
, and
K.
Kimura
, “
Effects of topological constraint and knot entanglement on the crystal growth of polymers proved by growth rate of spherulite of cyclic polyethylene
,”
Kobunshi Ronbunshu
68
,
694
701
(
2011
).
12.
M. E.
Córdova
,
A. T.
Lorenzo
,
A. J.
Müller
,
J. N.
Hoskins
, and
S. M.
Grayson
, “
A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones)
,”
Macromolecules
44
,
1742
1746
(
2011
).
13.
R. A.
Pérez
,
M. E.
Córdova
,
J. V.
López
,
J. N.
Hoskins
,
B.
Zhang
,
S. M.
Grayson
, and
A. J.
Müller
, “
Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s
,”
React. Funct. Polym.
80
,
71
82
(
2014
).
14.
R. A.
Pérez-Camargo
,
A.
Mugica
,
M.
Zubitur
, and
A. J.
Müller
, “
Crystallization of cyclic polymers
,” in
Polymer Crystallization I
, Advances in Polymer Science (
Springer
,
Cham
,
2015
), Vol. 276.
15.
H.-H.
Su
,
H.-L.
Chen
,
A.
Díaz
,
M. T.
Casas
,
J.
Puiggalí
,
J. N.
Hoskins
,
S. M.
Grayson
,
R. A.
Pérez
, and
A. J.
Müller
, “
New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson–Gibbs equation
,”
Polymer
54
,
846
859
(
2013
).
16.
R. A.
Pérez
,
J. V.
López
,
J. N.
Hoskins
,
B.
Zhang
,
S. M.
Grayson
,
M. C.
Teresa
,
J.
Puiggalí
, and
A. J.
Müller
, “
Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones)
,”
Macromolecules
47
,
3553
3566
(
2014
).
17.
J.
Wang
,
Z.
Li
,
R. A.
Pérez
,
A. J.
Müller
,
B.
Zhang
,
S. M.
Grayson
, and
W.
Hu
, “
Comparing crystallization rates between linear and cyclic poly(ε-caprolactones) via fast-scan chip-calorimeter measurements
,”
Polymer
63
,
34
40
(
2015
).
18.
Z.
Li
,
J.
Wang
,
R. A.
Pérez-Camargo
,
A. J.
Müller
,
B.
Zhang
,
S. M.
Grayson
, and
W.
Hu
, “
Non-monotonic molecular weight dependence of crystallization rates of linear and cyclic poly(ε-caprolactone)s in a wide temperature range
,”
Polym. Int.
65
,
1074
(
2016
).
19.
N.
Zaldua
,
R.
Liénard
,
T.
Josse
,
M.
Zubitur
,
A.
Mugica
,
A.
Iturrospe
,
A.
Arbe
,
J.
De Winter
,
O.
Coulembier
, and
A. J.
Müller
, “
Influence of chain topology (cyclic versus linear) on the nucleation and isothermal crystallization of poly(l-lactide) and poly(d-lactide)
,”
Macromolecules
51
,
1718
1732
(
2018
).
20.
K.
Schäler
,
E.
Ostas
,
K.
Schröter
,
T.
Thurn-Albrecht
,
W. H.
Binder
, and
K.
Saalwächter
, “
Influence of chain topology on polymer dynamics and crystallization. Investigation of linear and cyclic poly(ε-caprolactone)s by 1H solid-state NMR methods
,”
Macromolecules
44
,
2743
2754
(
2011
).
21.
G.
Zardalidis
,
J.
Mars
,
J.
Allgaier
,
M.
Mezger
,
D.
Richter
, and
G.
Floudas
, “
Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains
,”
Soft Matter
12
,
8124
8134
(
2016
).
22.
Y.
Tezuka
,
T.
Otsuka
,
K.
Adachi
,
R.
Komiya
,
N.
Ohno
, and
N.
Okui
, “
A defect-free ring polymer: Size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit
,”
Macromol. Rapid Commun.
29
,
1237
1241
(
2008
).
23.
E. J.
Shin
,
W.
Jeong
,
H. A.
Brown
,
B. J.
Koo
,
J. L.
Hedrick
, and
R. M.
Waymouth
, “
Crystallization of cyclic polymers: Synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s
,”
Macromolecules
44
,
2773
2779
(
2011
).
24.
T. A.
Kavassalis
and
P. R.
Sundararajan
, “
A molecular-dynamics study of polyethylene crystallization
,”
Macromolecules
26
,
4144
4150
(
1993
).
25.
P. R.
Sundararajan
and
T. A.
Kavassalis
, “
Molecular dynamics study of polyethylene chain folding: The effects of chain length and the torsional barrier
,”
J. Chem. Soc., Faraday Trans.
91
,
2541
2549
(
1995
).
26.
S.
Fujiwara
and
T.
Sato
, “
Molecular dynamics simulations of structural formation of a single polymer chain: Bond-orientational order and conformational defects
,”
J. Chem. Phys.
107
,
613
622
(
1997
).
27.
S.
Fujiwara
and
T.
Sato
, “
Structure formation of a single polymer chain. I. Growth of trans domains
,”
J. Chem. Phys.
114
,
6455
6463
(
2001
).
28.
C.
Li
,
P.
Choi
, and
P. R.
Sundararajan
, “
Simulation of chain folding in polyethylene: A comparison of united atom and explicit hydrogen atom models
,”
Polymer
51
,
2803
2808
(
2010
).
29.
C.
Liu
and
M.
Muthukumar
, “
Langevin dynamics simulations of early-stage polymer nucleation and crystallization
,”
J. Chem. Phys.
109
,
2536
2542
(
1998
).
30.
M.
Muthukumar
and
P.
Welch
, “
Modeling polymer crystallization from solutions
,”
Polymer
41
,
8833
8837
(
2000
).
31.
P.
Welch
and
M.
Muthukumar
, “
Molecular mechanisms of polymer crystallization from solution
,”
Phys. Rev. Lett.
87
,
218302
(
2001
).
32.
I.
Dukovski
and
M.
Murhukumar
, “
Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow
,”
J. Chem. Phys.
118
,
6648
6655
(
2003
).
33.
M.
Muthukumar
, “
Molecular modelling of nucleation in polymers
,”
Philos. Trans. R. Soc. London A
361
,
539
556
(
2003
).
34.
M.
Muthukumar
, “
Nucleation in polymer crystallization
,”
Adv. Chem. Phys.
128
,
1
63
(
2004
).
35.
M.
Muthukumar
, “
Modeling polymer crystallization
,”
Adv. Polym. Sci.
191
,
241
274
(
2005
).
36.
M.
Muthukumar
, “
Shifting paradigms in polymer crystallization
,”
Lect. Notes Phys.
714
,
1
18
(
2007
).
37.
K.
Esselink
,
P. A. J.
Hilbers
, and
B. W. H.
van Beest
, “
Molecular dynamics study of nucleation and melting of n-alkanes
,”
J. Chem. Phys.
101
,
9033
9041
(
1994
).
38.
H.
Takeuchi
, “
Structure formation during the crystallization induction period of a short chain-molecule system: A molecular dynamics study
,”
J. Chem. Phys.
109
,
5614
5621
(
1998
).
39.
S.
Fujiwara
and
T.
Sato
, “
Molecular dynamics simulation of structural formation of short polymer chains
,”
Phys. Rev. Lett.
80
,
991
994
(
1998
).
40.
S.
Fujiwara
and
T.
Sato
, “
Molecular dynamics simulation of structure formation of short chain molecules
,”
J. Chem. Phys.
110
,
9757
9764
(
1999
).
41.
T.
Yamamoto
, “
Computer modeling of polymer crystallization – Toward computer-assisted materials’ design
,”
Polymer
50
,
1975
1985
(
2009
).
42.
A.
Koyama
,
T.
Yamamoto
,
K.
Fukao
, and
Y.
Miyamoto
, “
Molecular dynamics simulation of polymer crystallization from an oriented amorphous state
,”
Phys. Rev. E
65
,
050801(R)
(
2002
).
43.
A.
Koyama
,
T.
Yamamoto
,
K.
Fukao
, and
Y.
Miyamoto
, “
Molecular dynamics studies on polymer crystallization from a stretched amorphous state
,”
J. Macromol. Sci. Part B Phys.
42
,
821
831
(
2003
).
44.
W.
Paul
,
D. Y.
Yoon
, and
G. D.
Smith
, “
An optimized united atom model for simulations of polymethylene melts
,”
J. Chem. Phys.
103
,
1702
1709
(
1995
).
45.
N.
Waheed
,
M. S.
Lavine
, and
G. C.
Rutledge
, “
Molecular simulation of crystal growth in n-eicosane
,”
J. Chem. Phys.
116
,
2301
2309
(
2002
).
46.
M. S.
Lavine
,
N.
Waheed
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension
,”
Polymer
44
,
1771
1779
(
2003
).
47.
M. J.
Ko
,
N.
Waheed
,
M. S.
Lavine
, and
G. C.
Rutledge
, “
Characterization of polyethylene cstallization from an oriented melt by molecular dynamics simulation
,”
J. Chem. Phys.
121
,
2823
2832
(
2004
).
48.
N.
Waheed
,
M. J.
Ko
, and
G. C.
Rutledge
, “
Molecular simulation of crystal growth in long alkanes
,”
Polymer
46
,
8689
8702
(
2005
).
49.
P.
Yi
and
G. C.
Rutledge
, “
Molecular simulation of crystal nucleation in n-octane melts
,”
J. Chem. Phys.
131
,
134902
(
2009
).
50.
P.
Yi
,
C. R.
Locker
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene
,”
Macromolecules
46
,
4723
4733
(
2013
).
51.
P.
Yi
and
G. C.
Rutledge
, “
Molecular simulation of bundle-like crystal nucleation from n-eicosane melts
,”
J. Chem. Phys.
135
,
024903
(
2011
).
52.
D. A.
Nicholson
and
G. C.
Rutledge
, “
Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension
,”
J. Chem. Phys.
145
,
244903
(
2016
).
53.
M.
Anwar
and
T.
Schilling
, “
Crystallization of polyethylene: A molecular dynamics simulation study of the nucleation and growth mechanisms
,”
Polymer
76
,
307
312
(
2015
).
54.
K.
Iyer
and
M.
Muthukumar
, “
Langevin dynamics simulation of crystallization of ring polymers
,”
J. Chem. Phys.
148
,
244904
(
2018
).
55.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. I. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
,
2569
2577
(
1998
).
56.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
, “
Optimized intermolecular potential functions for liquid hydrocarbons
,”
J. Am. Chem. Soc.
106
,
6638
6646
(
1984
).
57.
K.
Hagita
,
S.
Fujiwara
, and
N.
Iwaoka
, “
Structure formation of a quenched single polyethylene chain with different force fields in united atom molecular dynamics simulations
,”
AIP Adv.
8
,
115108
(
2018
).
58.
T.
Miura
,
R.
Kishi
,
M.
Mikami
, and
Y.
Tanabe
, “
Effect of rigidity on the crystallization processes of short polymer melts
,”
Phys. Rev. E
63
,
061807
(
2001
).
59.
T.
Miura
and
M.
Mikami
, “
Molecular dynamics study of crystallization of polymer systems confined in small nanodomains
,”
Phys. Rev. E
75
,
031804
(
2007
).
60.
K.
Tsurusaki
,
S.
Takeuchi
, and
T.
Deguchi
, “
Crystallization of an entangled ring polymer: Coexistence of crystal and amorphous regions
,”
J. Macromol. Sci., Part B: Phys. B
42
,
545
557
(
2003
).
61.
H.
Meyer
and
F. J.
Müller-Plathe
, “
Formation of chain-folded structures in supercooled polymer melts
,”
J. Chem. Phys.
115
,
7807
7810
(
2001
).
62.
H.
Meyer
and
F. J.
Müller-Plathe
, “
Formation of chain-folded structures in supercooled polymer melts examined by MD simulations
,”
Macromolecules
35
,
1241
1252
(
2002
).
63.
C.
Luo
,
M.
Kröger
, and
J.-U.
Sommer
, “
Molecular dynamics simulations of polymer crystallization under confinement: Entanglement effect
,”
Polymer
109
,
71
84
(
2017
).
64.
H.
Xiao
,
C.
Luo
,
D.
Yan
, and
J. –U.
Sommer
, “
Molecular dynamics simulation of crystallization cyclic polymer melts as compared to their linear counterparts
,”
Macromolecules
50
,
9796
9806
(
2017
).
65.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
 III
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
66.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comp. Phys.
117
,
1
19
(
1995
).
67.
G.
Ungar
,
J.
Stejny
,
A.
Keller
,
I.
Bidd
, and
M. C.
Whiting
, “
The crystallization of ultralong normal paraffins: The onset of chain folding
,”
Science
229
,
386
389
(
1985
).
68.
K. S.
Lee
and
G.
Wegner
, “
Linear and cyclic alkanes (CnH2n+2, CnH2n) with n > 100. Synthesis and evidence for chain-folding
,”
Makromol. Chem., Rapid Commun.
6
,
203
208
(
1985
).
69.
S.
Miyashita
and
H.
Takano
, “
Relaxation modes in random spin systems
,”
J. Phys. Soc. Jpn.
64
,
3688
3698
(
1995
).
70.
S.
Koseki
,
S.
Hirao
, and
H.
Takano
, “
Monte Carlo study of relaxation modes of a single polymer chain
,”
J. Phys. Soc. Jpn.
66
,
1631
1637
(
1997
).
71.
K.
Hagita
and
H.
Takano
, “
Relaxation mode analysis of a single polymer chain in a melt
,”
J. Phys. Soc. Jpn.
71
,
673
676
(
2002
).
72.
C. F.
Luo
and
J.-U.
Sommer
, “
Growth pathway and precursor states in single lamellar crystallization: MD simulations
,”
Macromolecules
44
,
1523
1529
(
2011
).
73.
J. U.
Sommer
and
C. F.
Luo
, “
Molecular dynamics simulations of semicrystalline polymers: Crystallization, melting, and reorganization
,”
J. Polym. Sci. Part B Polym. Phys.
48
,
2222
2232
(
2010
).
74.
C. F.
Luo
and
J.-U.
Sommer
, “
Coexistence of melting and growth during heating of a semicrystalline polymer
,”
Phys. Rev. Lett.
102
,
147801
(
2009
).
75.
M.
Muthukumar
, “
Theory of melt-memory in polymer crystallization
,”
J. Chem. Phys.
145
,
031105
(
2016
).
76.
A.
Häfele
,
B.
Heck
,
T.
Hippler
,
T.
Kawai
,
P.
Kohn
, and
G.
Strobl
, “
Crystallization of poly(ethylene-co-octene): II melt memory effects on first order kinetics
,”
Eur. Phys. J. E
16
,
217
224
(
2005
).
77.
G. A.
Strobl
, “
Thermodynamic multiphase scheme treating polymer crystallization and melting
,”
Eur. Phys. J. E
18
,
295
309
(
2005
).
78.
G.
Strobl
, “
From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization?
,”
Eur. Phys. J. E
3
,
165
183
(
2000
).
79.
B. O.
Reid
,
M.
Vadlamudi
,
A.
Mamun
,
H.
Janani
,
H.
Gao
,
W.
Hu
, and
R. G.
Alamo
, “
Strong memory effect of crystallization above the equilibrium melting point of random copolymers
,”
Macromolecules
46
,
6485
6497
(
2013
).
80.
P. M.
Welch
, “
Examining the role of fluctuations in the early stages of homogenous polymer crystallization with simulation and statistical learning
,”
J. Chem. Phys.
146
,
044901
(
2017
).
81.
J.
Gasteiger
and
M.
Marsili
, “
Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges
,”
Tetrahedron
36
,
3219
3228
(
1980
).
82.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graph. Model.
25
,
247
260
(
2006
).
You do not currently have access to this content.