The difficulty in achieving high spectral resolution and accurate line shape in sum-frequency generation vibrational spectroscopy (SFG-VS) has restricted its use in applications requiring precise detection and quantitative analysis. Recently, the development of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution generated by synchronizing two independent amplifier lasers have opened new opportunities for probing an intrinsic SFG response. Here, we present a new flexible approach to achieve HR-BB-SFG-VS. In this system, two regeneration amplifiers shared the same oscillator laser as the seed, and a time-asymmetric visible pulse with a nearly Lorentzian line shape filtered by an etalon was used to overlap with a femtosecond broadband infrared pulse. This Lorentzian line shape of the visible pulse can greatly simplify the spectral fitting and analysis. We also demonstrated that the single-sided long visible pulse provided both high spectral resolution (1.4 cm−1) and effective suppression of the non-resonant background by detuning the time delay between visible and infrared pulses in SFG-VS measurements. With this new SFG setup, a pair of spectral splittings by 3.1 ± 0.7 and 3 ± 0.2 cm−1 for the symmetric and antisymmetric stretching of the CH3 group was resolved at the CH3CN/TiO2(110) surface, which are tentatively attributed to two different orientational methyl groups. These technological advancements can help broaden the applications of HR-BB-SFG-VS and provide solid ground for a better understanding of complex molecular structures and dynamics at interfaces.

1.
2.
K. B.
Eisenthal
,
Chem. Rev.
96
,
1343
(
1996
).
3.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.-H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
4.
C. S.
Tian
and
Y. R.
Shen
,
Surf. Sci. Rep.
69
,
105
(
2014
).
5.
S.
Roke
,
A. W.
Kleyn
, and
M.
Bonn
,
Surf. Sci.
593
,
79
(
2005
).
6.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley-Interscience
,
New York
,
1984
).
7.
J. N.
Myers
and
Z.
Chen
,
J. Adhesi.
93
,
1081
(
2016
).
8.
P.
Chen
,
S.
Westerberg
,
K. Y.
Kung
,
J.
Zhu
,
J.
Grunes
 et al.,
Appl. Catal., A
229
,
147
(
2002
).
9.
B.
Zhang
,
J.
Tan
,
C.
Li
,
J.
Zhang
, and
S.
Ye
,
Langmuir
34
,
7554
(
2018
).
10.
S.
Nihonyanagi
,
T.
Ishiyama
,
T. K.
Lee
,
S.
Yamaguchi
,
M.
Bonn
 et al.,
J. Am. Chem. Soc.
133
,
16875
(
2011
).
11.
A. B.
Voges
,
H. A.
Al-Abadleh
,
M. J.
Musorrafiti
,
P. A.
Bertin
,
S.B. T.
Nguyen
 et al.,
J. Phys. Chem. B
108
,
18675
(
2004
).
12.
E.
Tyrode
and
J. F. D.
Liljeblad
,
J. Phys. Chem. C
117
,
1780
(
2013
).
14.
L. J.
Richter
,
T. P.
Petralli-Mallow
, and
J. C.
Stephenson
,
Opt. Lett.
23
,
1594
(
1998
).
15.
D.
Star
,
T.
Kikteva
, and
G. W.
Leach
,
J. Chem. Phys.
111
,
14
(
1999
).
16.
J. P.
Smith
and
V. H.
Smith
,
Anal. Chem.
76
,
287
(
2004
).
17.
H.
Arnolds
and
M.
Bonn
,
Surf. Sci. Rep.
65
,
45
(
2010
).
18.
L.
Velarde
and
H. F.
Wang
,
Phys. Chem. Chem. Phys.
15
,
19970
(
2013
).
19.
J. P.
Symonds
,
H.
Arnolds
,
V. L.
Zhang
,
K.
Fukutani
, and
D. A.
King
,
J. Chem. Phys.
120
,
7158
(
2004
).
20.
M.
Cho
,
C.
Hess
, and
M.
Bonn
,
Phys. Rev. B
65
,
205423
(
2002
).
21.
M. R.
Strunk
and
C. T.
Williams
,
Langmuir
19
,
9210
(
2003
).
22.
L.
Velarde
,
X. Y.
Zhang
,
Z.
Lu
,
A. G.
Joly
,
Z.
Wang
 et al.,
J. Chem. Phys.
135
,
241102
(
2011
).
23.
Z.
Zhang
,
Y.
Guo
,
Z.
Lu
,
L.
Velarde
, and
H.-f.
Wang
,
J. Phys. Chem. C
116
,
2976
(
2012
).
24.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
C.
Weeraman
, and
A. V.
Benderskii
,
J. Chem. Phys.
132
,
234503
(
2010
).
25.
R.-j.
Feng
,
L.
Lin
,
Y.-y.
Li
,
M.-h.
Liu
,
Y.
Guo
 et al.,
Biophys. J.
112
,
2173
(
2017
).
26.
A.-a.
Liu
,
S.
Liu
,
R.
Zhang
, and
Z.
Ren
,
J. Phys. Chem. C
119
,
23486
(
2015
).
27.
S.
Liu
,
A.-a.
Liu
,
B.
Wen
,
R.
Zhang
,
C.
Zhou
 et al.,
J. Phys. Chem. Lett.
6
,
3327
(
2015
).
28.
J. F. D.
Liljeblad
and
E.
Tyrode
,
J. Phys. Chem. C
116
,
22893
(
2012
).
29.
H. F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
30.
A. U.
Chowdhury
,
F.
Liu
,
B. R.
Watson
,
R.
Ashkar
,
J.
Katsaras
 et al.,
Opt. Lett.
43
,
2038
(
2018
).
31.
J.-C.
Diels
and
W.
Rudolph
,
Ultrashort Laser Pulse Phenomena
(
Elsevier, Inc.
,
USA
,
2006
).
32.
S.
Liu
,
A. A.
Liu
,
R.
Zhang
, and
Z.
Ren
,
Rev. Sci. Instrum.
87
,
044101
(
2016
).
33.
Q.
Guo
,
C.
Xu
,
Z.
Ren
,
W.
Yang
,
Z.
Ma
 et al.,
J. Am. Chem. Soc.
134
,
13366
(
2012
).
34.
M.
Born
and
E.
Wolf
,
Principle of Optics
(
Cambridge University
,
1998
).
35.
A.
Lagutchev
,
S. A.
Hambir
, and
D. D.
Dlot
,
J. Phys. Chem. C
111
,
13645
(
2007
).
36.
N.
Ismail
,
C. C.
Kores
,
D.
Geskus
, and
M.
Pollnau
,
Opt. Express
24
,
16366
(
2016
).
37.
A. N.
Bordenyuk
,
H.
Jayathilake
, and
A. V.
Benderskii
,
J. Phys. Chem. B
109
,
15941
(
2005
).
38.
J. E.
Laaser
,
W.
Xiong
, and
M. T.
Zanni
,
J. Phys. Chem. B
115
,
2536
(
2011
).
39.
S.
Nihonyanagi
,
A.
Eftekhari-Bafrooei
, and
E.
Borguet
,
J. Chem. Phys.
134
,
084701
(
2011
).
40.
L.
Velarde
and
H.-f.
Wang
,
J. Chem. Phys.
139
,
084204
(
2013
).
41.
I. E.
Gordon
,
L. S.
Rothman
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
 et al.,
J. Quant. Spectrosc. Radiat. Transfer
203
,
3
(
2017
).
42.
E. L.
Pace
and
L. J.
Noe
,
J. Chem. Phys.
49
,
5317
(
1968
).
43.
J.
Zhuang
,
C. N.
Rusu
, and
J. T.
Yates
, Jr
,
J. Phys. Chem. B
103
,
6957
(
1999
).
44.
J. H.
Jang
,
F.
Lydiatt
,
R.
Lindsay
, and
S.
Baldelli
,
J. Phys. Chem. A
117
,
6288
(
2013
).
45.
J. A.
Carter
,
Z. H.
Wang
, and
D. D.
Dlott
,
Acc. Chem. Res.
42
,
1343
(
2009
).
You do not currently have access to this content.